Computer Systems Institute, Faculty of Informatics, Università della Svizzera italiana (USI), 6900 Lugano, Switzerland.
Sensors (Basel). 2023 May 16;23(10):4803. doi: 10.3390/s23104803.
The estimation of human mobility patterns is essential for many components of developed societies, including the planning and management of urbanization, pollution, and disease spread. One important type of mobility estimator is the next-place predictors, which use previous mobility observations to anticipate an individual's subsequent location. So far, such predictors have not yet made use of the latest advancements in artificial intelligence methods, such as General Purpose Transformers (GPT) and Graph Convolutional Networks (GCNs), which have already achieved outstanding results in image analysis and natural language processing. This study explores the use of GPT- and GCN-based models for next-place prediction. We developed the models based on more general time series forecasting architectures and evaluated them using two sparse datasets (based on check-ins) and one dense dataset (based on continuous GPS data). The experiments showed that GPT-based models slightly outperformed the GCN-based models with a difference in accuracy of 1.0 to 3.2 percentage points (p.p.). Furthermore, Flashback-LSTM-a state-of-the-art model specifically designed for next-place prediction on sparse datasets-slightly outperformed the GPT-based and GCN-based models on the sparse datasets (1.0 to 3.5 p.p. difference in accuracy). However, all three approaches performed similarly on the dense dataset. Given that future use cases will likely involve dense datasets provided by GPS-enabled, always-connected devices (e.g., smartphones), the slight advantage of Flashback on the sparse datasets may become increasingly irrelevant. Given that the performance of the relatively unexplored GPT- and GCN-based solutions was on par with state-of-the-art mobility prediction models, we see a significant potential for them to soon surpass today's state-of-the-art approaches.
人类移动模式的估计对于许多发达社会的组成部分至关重要,包括城市规划和管理、污染和疾病传播。一种重要的移动性估计器是下一位置预测器,它使用先前的移动观测值来预测个体的后续位置。到目前为止,这种预测器还没有利用人工智能方法的最新进展,例如通用目的转换器(GPT)和图卷积网络(GCN),这些方法在图像分析和自然语言处理方面已经取得了卓越的成果。本研究探讨了基于 GPT 和 GCN 的模型在下一步位置预测中的应用。我们基于更通用的时间序列预测架构开发了这些模型,并使用两个稀疏数据集(基于签到记录)和一个密集数据集(基于连续 GPS 数据)对其进行了评估。实验表明,基于 GPT 的模型略微优于基于 GCN 的模型,准确率差异为 1.0 到 3.2 个百分点(p.p.)。此外,特别为稀疏数据集上的下一步位置预测而设计的 Flashback-LSTM(一种最先进的模型)在稀疏数据集上略优于基于 GPT 和 GCN 的模型(准确率差异为 1.0 到 3.5 个百分点)。然而,这三种方法在密集数据集上的表现相似。鉴于未来的用例可能涉及到由 GPS 启用的、始终连接的设备(例如智能手机)提供的密集数据集,Flashback 在稀疏数据集上的轻微优势可能会变得越来越不重要。鉴于相对未被探索的 GPT 和 GCN 基础解决方案的性能与最先进的移动性预测模型相当,我们看到它们很快超越当今最先进方法的潜力巨大。