Suppr超能文献

使用稳健集成机器学习准确诊断自杀意念/行为:中东和北非(MENA)地区的大学生群体

Accurate Diagnosis of Suicide Ideation/Behavior Using Robust Ensemble Machine Learning: A University Student Population in the Middle East and North Africa (MENA) Region.

作者信息

Naghavi Azam, Teismann Tobias, Asgari Zahra, Mohebbian Mohammad Reza, Mansourian Marjan, Mañanas Miguel Ángel

机构信息

Department of Counseling, Faculty of Education and Psychology, University of Isfahan, Azadi Sq, Isfahan 8174673441, Iran.

Department of Clinical Psychology and Psychotherapy, Ruhr-Universität Bochum, 44787 Bochum, Germany.

出版信息

Diagnostics (Basel). 2020 Nov 16;10(11):956. doi: 10.3390/diagnostics10110956.

Abstract

Suicide is one of the most critical public health concerns in the world and the second cause of death among young people in many countries. However, to date, no study can diagnose suicide ideation/behavior among university students in the Middle East and North Africa (MENA) region using a machine learning approach. Therefore, stability feature selection and stacked ensembled decision trees were employed in this classification problem. A total of 573 university students responded to a battery of questionnaires. Three-fold cross-validation with a variety of performance indices was sued. The proposed diagnostic system had excellent balanced diagnosis accuracy (AUC = 0.90 [CI 95%: 0.86-0.93]) with a high correlation between predicted and observed class labels, fair discriminant power, and excellent class labeling agreement rate. Results showed that 23 items out of all items could accurately diagnose suicide ideation/behavior. These items were psychological problems and how to experience trauma, from the demographic variables, nine items from Post-Traumatic Stress Disorder Checklist (PCL-5), two items from Post Traumatic Growth (PTG), two items from the Patient Health Questionnaire (PHQ), six items from the Positive Mental Health (PMH) questionnaire, and one item related to social support. Such features could be used as a screening tool to identify young adults who are at risk of suicide ideation/behavior.

摘要

自杀是全球最关键的公共卫生问题之一,也是许多国家年轻人的第二大死因。然而,迄今为止,尚无研究能够运用机器学习方法诊断中东和北非(MENA)地区大学生的自杀意念/行为。因此,本分类问题采用了稳定性特征选择和堆叠集成决策树方法。共有573名大学生回答了一系列问卷。使用了具有多种性能指标的三折交叉验证。所提出的诊断系统具有出色的平衡诊断准确率(AUC = 0.90 [CI 95%: 0.86 - 0.93]),预测类别标签与观察到的类别标签之间具有高度相关性,判别能力良好,类别标签一致性率出色。结果表明,所有项目中的23项能够准确诊断自杀意念/行为。这些项目包括心理问题以及如何经历创伤,来自人口统计学变量的9项,创伤后应激障碍检查表(PCL - 5)中的9项,创伤后成长(PTG)中的2项,患者健康问卷(PHQ)中的2项,积极心理健康(PMH)问卷中的6项,以及1项与社会支持相关的项目。这些特征可作为一种筛查工具,用于识别有自杀意念/行为风险的年轻人。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6cd/7696788/da8b074692b1/diagnostics-10-00956-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验