André Arthur, Peyrou Bruno, Carpentier Alexandre, Vignaux Jean-Jacques
Ramsay santé, Clinique Geoffroy Saint-Hilaire, Paris, France.
Neurosurgery Department, Pitié-Salpêtrière University Hospital, Paris, France.
Global Spine J. 2022 Jun;12(5):894-908. doi: 10.1177/2192568220969373. Epub 2020 Nov 19.
Retrospective study at a unique center.
The aim of this study is twofold, to develop a virtual patients model for lumbar decompression surgery and to evaluate the precision of an artificial neural network (ANN) model designed to accurately predict the clinical outcomes of lumbar decompression surgery.
We performed a retrospective study of complete Electronic Health Records (EHR) to identify potential unfavorable criteria for spine surgery (predictors). A cohort of synthetics EHR was created to classify patients by surgical success (green zone) or partial failure (orange zone) using an Artificial Neural Network which screens all the available predictors.
In the actual cohort, we included 60 patients, with complete EHR allowing efficient analysis, 26 patients were in the orange zone (43.4%) and 34 were in the green zone (56.6%). The average positive criteria amount for actual patients was 8.62 for the green zone (SD+/- 3.09) and 10.92 for the orange zone (SD 3.38). The classifier (a neural network) was trained using 10,000 virtual patients and 2000 virtual patients were used for test purposes. The 12,000 virtual patients were generated from the 60 EHR, of which half were in the green zone and half in the orange zone. The model showed an accuracy of 72% and a ROC score of 0.78. The sensitivity was 0.885 and the specificity 0.59.
Our method can be used to predict a favorable patient to have lumbar decompression surgery. However, there is still a need to further develop its ability to analyze patients in the "failure of treatment" zone to offer precise management of patient health before spinal surgery.
在一个独特的中心进行回顾性研究。
本研究有两个目的,一是开发用于腰椎减压手术的虚拟患者模型,二是评估旨在准确预测腰椎减压手术临床结果的人工神经网络(ANN)模型的精度。
我们对完整的电子健康记录(EHR)进行了回顾性研究,以确定脊柱手术的潜在不利标准(预测因素)。使用筛选所有可用预测因素的人工神经网络,创建了一组合成电子健康记录,以按手术成功(绿色区域)或部分失败(橙色区域)对患者进行分类。
在实际队列中,我们纳入了60例患者,其完整的电子健康记录允许进行有效分析,26例患者处于橙色区域(43.4%),34例处于绿色区域(56.6%)。绿色区域实际患者的平均阳性标准数量为8.62(标准差±3.09),橙色区域为10.92(标准差3.38)。使用10000个虚拟患者对分类器(神经网络)进行训练,并使用2000个虚拟患者进行测试。这12000个虚拟患者由60份电子健康记录生成,其中一半处于绿色区域,一半处于橙色区域。该模型的准确率为72%,ROC评分为0.78。敏感性为0.885,特异性为0.59。
我们的方法可用于预测适合进行腰椎减压手术的患者。然而,仍需要进一步提高其分析“治疗失败”区域患者的能力,以便在脊柱手术前对患者健康进行精确管理。