Suppr超能文献

人工智能和机器学习在脊柱手术全程护理中的潜在应用

Potential Applications of Artificial Intelligence and Machine Learning in Spine Surgery Across the Continuum of Care.

作者信息

Browd Samuel R, Park Christine, Donoho Daniel A

机构信息

Department of Neurological Surgery, University of Washington, Seattle, WA, USA

Department of Neurological Surgery, University of Washington, Seattle, WA, USA.

出版信息

Int J Spine Surg. 2023 Jun;17(S1):S26-S33. doi: 10.14444/8507. Epub 2023 Jun 8.

Abstract

The worlds of spinal surgery and computational science are intersecting at the nexus of the operating room and across the continuum of patient care. As medicine moves toward digitizing all aspects of a patient's care, immense amounts of patient data generated and aggregated across surgeons, procedures, and institutions will enable previously inaccessible computationally driven insights. These early insights from artificial intelligence (AI) and machine learning (ML)-enabled technologies are beginning to transform medicine and surgery. The complex pathologies facing spine surgeons and their patients require integrative, multimodal, data-driven management strategies. As these data and the technological tools to computationally process them become increasingly available to spine surgeons, AI and ML methods will inform patient selection, preoperatively risk-stratify patients based on myriad factors, and inform interoperative surgical decisions. Once these tools enter early clinical practice, their use creates a virtual flywheel whereby the use of these tools generates additional data that further accelerate the evolution of computational "knowledge" systems. At this digital crossroads, interested and motivated surgeons have an opportunity to understand these technologies, guide their application toward optimal care, and advocate for opportunities where these powerful new tools can deliver step changes in efficiency, accuracy, and intelligence. In the present article, we review the nomenclature and basics of AI and ML and highlight the current and future applications of these technologies across the care continuum of spinal surgery.

摘要

脊柱外科领域与计算科学领域正在手术室及患者护理的整个连续过程中相互交融。随着医学朝着患者护理各方面数字化迈进,跨越外科医生、手术及机构所产生和汇总的海量患者数据,将带来此前无法获得的由计算驱动的见解。这些源自人工智能(AI)和机器学习(ML)技术的早期见解正开始改变医学和外科手术。脊柱外科医生及其患者所面临的复杂病情需要综合、多模式、数据驱动的管理策略。随着这些数据以及用于对其进行计算处理的技术工具越来越多地为脊柱外科医生所用,AI和ML方法将为患者选择提供依据,基于众多因素对患者进行术前风险分层,并为术中手术决策提供依据。一旦这些工具进入早期临床实践,它们的使用会形成一个虚拟飞轮,即这些工具的使用会产生更多数据,进一步加速计算“知识”系统的发展。在这个数字十字路口,感兴趣且有积极性的外科医生有机会了解这些技术,引导其应用以实现最佳护理,并倡导利用这些强大的新工具能够在效率、准确性和智能方面带来巨大提升的机会。在本文中,我们回顾了AI和ML的术语及基础知识,并重点介绍了这些技术在脊柱外科护理连续过程中的当前及未来应用。

相似文献

1
Potential Applications of Artificial Intelligence and Machine Learning in Spine Surgery Across the Continuum of Care.
Int J Spine Surg. 2023 Jun;17(S1):S26-S33. doi: 10.14444/8507. Epub 2023 Jun 8.
2
Artificial intelligence for adult spinal deformity: current state and future directions.
Spine J. 2021 Oct;21(10):1626-1634. doi: 10.1016/j.spinee.2021.04.019. Epub 2021 May 8.
4
Artificial Intelligence in plastic surgery: What is it? Where are we now? What is on the horizon?
Ann R Coll Surg Engl. 2020 Oct;102(8):577-580. doi: 10.1308/rcsann.2020.0158. Epub 2020 Aug 11.
5
The emerging role of generative artificial intelligence in transplant medicine.
Am J Transplant. 2024 Oct;24(10):1724-1730. doi: 10.1016/j.ajt.2024.06.009. Epub 2024 Jun 18.
6
Artificial Intelligence in Surgery: Promises and Perils.
Ann Surg. 2018 Jul;268(1):70-76. doi: 10.1097/SLA.0000000000002693.
7
Artificial intelligence in spine care: current applications and future utility.
Eur Spine J. 2022 Aug;31(8):2057-2081. doi: 10.1007/s00586-022-07176-0. Epub 2022 Mar 27.
9
AOA Critical Issues Symposium: Shaping the Impact of Artificial Intelligence within Orthopaedic Surgery.
J Bone Joint Surg Am. 2023 Sep 20;105(18):1475-1479. doi: 10.2106/JBJS.22.01330. Epub 2023 May 12.
10
Humans use tools: From handcrafted tools to artificial intelligence.
J Vasc Surg Venous Lymphat Disord. 2024 Mar;12(2):101705. doi: 10.1016/j.jvsv.2023.101705. Epub 2023 Nov 11.

引用本文的文献

2
AI and machine learning in paediatric spine deformity surgery.
Bone Jt Open. 2025 May 23;6(5):569-581. doi: 10.1302/2633-1462.65.BJO-2024-0089.R1.
3
Torg-Pavlov ratio qualification to diagnose developmental cervical spinal stenosis based on HRViT neural network.
BMC Musculoskelet Disord. 2025 Apr 23;26(1):405. doi: 10.1186/s12891-025-08667-z.
4
Scoping review of robotics technology in spinal surgery with highlights of the Annual Seattle Science Foundation Course.
Ann Transl Med. 2024 Dec 24;12(6):118. doi: 10.21037/atm-24-100. Epub 2024 Dec 18.
5
Alignment considerations in degenerative spinal conditions: A narrative review.
N Am Spine Soc J. 2024 Oct 1;20:100562. doi: 10.1016/j.xnsj.2024.100562. eCollection 2024 Dec.

本文引用的文献

1
A Delphi consensus statement for digital surgery.
NPJ Digit Med. 2022 Jul 19;5(1):100. doi: 10.1038/s41746-022-00641-6.
2
Machine Learning-Based Systems for the Anticipation of Adverse Events After Pediatric Cardiac Surgery.
Front Pediatr. 2022 Jun 27;10:930913. doi: 10.3389/fped.2022.930913. eCollection 2022.
4
5
Artificial intelligence in predicting early-onset adjacent segment degeneration following anterior cervical discectomy and fusion.
Eur Spine J. 2022 Aug;31(8):2104-2114. doi: 10.1007/s00586-022-07238-3. Epub 2022 May 11.
7
Using radiomic features of lumbar spine CT images to differentiate osteoporosis from normal bone density.
BMC Musculoskelet Disord. 2022 Apr 8;23(1):336. doi: 10.1186/s12891-022-05309-6.
8
Improving Surgical Triage in Spine Clinic: Predicting Likelihood of Surgery Using Machine Learning.
World Neurosurg. 2022 Jul;163:e192-e198. doi: 10.1016/j.wneu.2022.03.096. Epub 2022 Mar 26.
10
Can Natural Language Processing and Artificial Intelligence Automate The Generation of Billing Codes From Operative Note Dictations?
Global Spine J. 2023 Sep;13(7):1946-1955. doi: 10.1177/21925682211062831. Epub 2022 Feb 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验