Suppr超能文献

退行性腰椎椎管狭窄症的预测因素:一种基于机器学习算法技术得到的模型。

Predictive factors for degenerative lumbar spinal stenosis: a model obtained from a machine learning algorithm technique.

机构信息

Department of Physical Therapy, Zefat Academic College, 13206, Zefat, Israel.

Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, 6997801, Tel Aviv, Israel.

出版信息

BMC Musculoskelet Disord. 2023 Mar 23;24(1):218. doi: 10.1186/s12891-023-06330-z.

Abstract

BACKGROUND

Degenerative lumbar spinal stenosis (DLSS) is the most common spine disease in the elderly population. It is usually associated with lumbar spine joints/or ligaments degeneration. Machine learning technique is an exclusive method for handling big data analysis; however, the development of this method for spine pathology is rare. This study aims to detect the essential variables that predict the development of symptomatic DLSS using the random forest of machine learning (ML) algorithms technique.

METHODS

A retrospective study with two groups of individuals. The first included 165 with symptomatic DLSS (sex ratio 80 M/85F), and the second included 180 individuals from the general population (sex ratio: 90 M/90F) without lumbar spinal stenosis symptoms. Lumbar spine measurements such as vertebral or spinal canal diameters from L1 to S1 were conducted on computerized tomography (CT) images. Demographic and health data of all the participants (e.g., body mass index and diabetes mellitus) were also recorded.

RESULTS

The decision tree model of ML demonstrate that the anteroposterior diameter of the bony canal at L5 (males) and L4 (females) levels have the greatest stimulus for symptomatic DLSS (scores of 1 and 0.938). In addition, combination of these variables with other lumbar spine features is mandatory for developing the DLSS.

CONCLUSIONS

Our results indicate that combination of lumbar spine characteristics such as bony canal and vertebral body dimensions rather than the presence of a sole variable is highly associated with symptomatic DLSS onset.

摘要

背景

退行性腰椎椎管狭窄症(DLSS)是老年人最常见的脊柱疾病。它通常与腰椎关节/韧带退化有关。机器学习技术是处理大数据分析的独特方法;然而,这种方法在脊柱病理学中的发展很少见。本研究旨在使用机器学习(ML)算法的随机森林检测预测有症状的 DLSS 发展的基本变量。

方法

一项回顾性研究,分为两组个体。第一组包括 165 名有症状的 DLSS 患者(男女比例为 80 例/85 例),第二组包括 180 名来自普通人群(男女比例为 90 例/90 例)的无症状腰椎椎管狭窄患者。在计算机断层扫描(CT)图像上对腰椎从 L1 到 S1 的椎体或椎管直径等进行测量。还记录了所有参与者的人口统计学和健康数据(例如,体重指数和糖尿病)。

结果

ML 的决策树模型表明,L5(男性)和 L4(女性)水平的骨性椎管前后径对有症状的 DLSS 具有最大的刺激作用(得分为 1 和 0.938)。此外,这些变量与其他腰椎特征的组合对于开发 DLSS 是强制性的。

结论

我们的结果表明,结合腰椎特征,如骨性椎管和椎体尺寸,而不是单一变量的存在,与有症状的 DLSS 发作高度相关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f0b/10035245/6f33768f3485/12891_2023_6330_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验