General Paediatrics, Erasmus MC Sophia Children's Hospital, Rotterdam, Zuid-Holland, The Netherlands.
Section of Paediatric Infectious Diseases, Imperial College London, London, UK.
Arch Dis Child. 2021 Jul;106(7):641-647. doi: 10.1136/archdischild-2020-319794. Epub 2020 Nov 18.
To develop and cross-validate a multivariable clinical prediction model to identify invasive bacterial infections (IBI) and to identify patient groups who might benefit from new biomarkers.
Prospective observational study.
12 emergency departments (EDs) in 8 European countries.
Febrile children aged 0-18 years.
IBI, defined as bacteraemia, meningitis and bone/joint infection. We derived and cross-validated a model for IBI using variables from the Feverkidstool (clinical symptoms, C reactive protein), neurological signs, non-blanching rash and comorbidity. We assessed discrimination (area under the receiver operating curve) and diagnostic performance at different risk thresholds for IBI: sensitivity, specificity, negative and positive likelihood ratios (LRs).
Of 16 268 patients, 135 (0.8%) had an IBI. The discriminative ability of the model was 0.84 (95% CI 0.81 to 0.88) and 0.78 (95% CI 0.74 to 0.82) in pooled cross-validations. The model performed well for the rule-out threshold of 0.1% (sensitivity 0.97 (95% CI 0.93 to 0.99), negative LR 0.1 (95% CI 0.0 to 0.2) and for the rule-in threshold of 2.0% (specificity 0.94 (95% CI 0.94 to 0.95), positive LR 8.4 (95% CI 6.9 to 10.0)). The intermediate thresholds of 0.1%-2.0% performed poorly (ranges: sensitivity 0.59-0.93, negative LR 0.14-0.57, specificity 0.52-0.88, positive LR 1.9-4.8) and comprised 9784 patients (60%).
The rule-out threshold of this model has potential to reduce antibiotic treatment while the rule-in threshold could be used to target treatment in febrile children at the ED. In more than half of patients at intermediate risk, sensitive biomarkers could improve identification of IBI and potentially reduce unnecessary antibiotic prescriptions.
开发并验证一个多变量临床预测模型,以识别侵袭性细菌感染(IBI),并确定可能受益于新生物标志物的患者群体。
前瞻性观察性研究。
8 个欧洲国家的 12 个急诊部门(ED)。
0-18 岁发热儿童。
IBI,定义为菌血症、脑膜炎和骨髓/关节感染。我们使用 Feverkidstool(临床症状、C 反应蛋白)、神经系统体征、非苍白皮疹和合并症中的变量来推导和验证 IBI 模型。我们评估了不同 IBI 风险阈值的区分能力(接受者操作特征曲线下的面积)和诊断性能:灵敏度、特异性、阴性和阳性似然比(LR)。
在 16268 名患者中,有 135 名(0.8%)患有 IBI。模型的区分能力在汇总交叉验证中为 0.84(95%CI 0.81 至 0.88)和 0.78(95%CI 0.74 至 0.82)。对于 0.1%的排除阈值,该模型表现良好(灵敏度 0.97(95%CI 0.93 至 0.99),阴性 LR 0.1(95%CI 0.0 至 0.2),对于 2.0%的纳入阈值,特异性为 0.94(95%CI 0.94 至 0.95),阳性 LR 8.4(95%CI 6.9 至 10.0))。0.1%-2.0%的中间阈值表现不佳(范围:灵敏度 0.59-0.93,阴性 LR 0.14-0.57,特异性 0.52-0.88,阳性 LR 1.9-4.8),包括 9784 名患者(60%)。
该模型的排除阈值有可能减少抗生素治疗,而纳入阈值可用于急诊科发热儿童的治疗目标。在超过一半的中度风险患者中,敏感的生物标志物可以提高 IBI 的识别能力,并可能减少不必要的抗生素处方。