Suppr超能文献

JavaCyte,一种用于自动量化心脏结构重构关键特征的新型开源工具。

JavaCyte, a novel open-source tool for automated quantification of key hallmarks of cardiac structural remodeling.

机构信息

Department of Physiology, Cardiovascular Research Institute Maastricht, Universiteitssingel 50, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.

Cardiovascular Institute, Hospital Clinic de Barcelona, Barcelona, Spain.

出版信息

Sci Rep. 2020 Nov 18;10(1):20074. doi: 10.1038/s41598-020-76932-3.

Abstract

Many cardiac pathologies involve changes in tissue structure. Conventional analysis of structural features is extremely time-consuming and subject to observer bias. The possibility to determine spatial interrelations between these features is often not fully exploited. We developed a staining protocol and an ImageJ-based tool (JavaCyte) for automated histological analysis of cardiac structure, including quantification of cardiomyocyte size, overall and endomysial fibrosis, spatial patterns of endomysial fibrosis, fibroblast density, capillary density and capillary size. This automated analysis was compared to manual quantification in several well-characterized goat models of atrial fibrillation (AF). In addition, we tested inter-observer variability in atrial biopsies from the CATCH-ME consortium atrial tissue bank, with patients stratified by their cardiovascular risk profile for structural remodeling. We were able to reproduce previous manually derived histological findings in goat models for AF and AV block (AVB) using JavaCyte. Furthermore, strong correlation was found between manual and automated observations for myocyte count (r = 0.94, p < 0.001), myocyte diameter (r = 0.97, p < 0.001), endomysial fibrosis (r = 0.98, p < 0.001) and capillary count (r = 0.95, p < 0.001) in human biopsies. No significant variation between observers was observed (ICC = 0.89, p < 0.001). We developed and validated an open-source tool for high-throughput, automated histological analysis of cardiac tissue properties. JavaCyte was as accurate as manual measurements, with less inter-observer variability and faster throughput.

摘要

许多心脏病理学涉及组织结构的变化。传统的结构特征分析非常耗时,且容易受到观察者偏见的影响。通常情况下,这些特征之间的空间关系的确定并未得到充分利用。我们开发了一种染色方案和基于 ImageJ 的工具(JavaCyte),用于对心脏结构进行自动化组织学分析,包括心肌细胞大小、总体和内膜纤维化、内膜纤维化的空间模式、成纤维细胞密度、毛细血管密度和毛细血管大小的定量。这种自动化分析与几种经过充分表征的心房颤动(AF)山羊模型的手动定量进行了比较。此外,我们还在 CATCH-ME 心房组织库的心房活检中测试了观察者间的变异性,患者根据其心血管结构重塑的风险状况进行分层。我们能够使用 JavaCyte 重现以前在 AF 和房室传导阻滞(AVB)山羊模型中手动得出的组织学发现。此外,手动和自动观察之间在心肌细胞计数(r=0.94,p<0.001)、心肌细胞直径(r=0.97,p<0.001)、内膜纤维化(r=0.98,p<0.001)和毛细血管计数(r=0.95,p<0.001)方面具有很强的相关性。在人类活检中,观察者之间没有观察到显著差异(ICC=0.89,p<0.001)。我们开发并验证了一种用于高通量、自动化心脏组织特性分析的开源工具。JavaCyte 与手动测量一样准确,观察者间的变异性更小,通量更快。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8ef/7675975/010d837cb92a/41598_2020_76932_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验