Suppr超能文献

外膜线粒体蛋白的功能:介导线粒体动力学与线粒体自噬之间的串扰。

Functions of outer mitochondrial membrane proteins: mediating the crosstalk between mitochondrial dynamics and mitophagy.

机构信息

Department of Biological Sciences, Faculty of Science, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Republic of Singapore.

Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA.

出版信息

Cell Death Differ. 2021 Mar;28(3):827-842. doi: 10.1038/s41418-020-00657-z. Epub 2020 Nov 18.

Abstract

Most cellular stress responses converge on the mitochondria. Consequently, the mitochondria must rapidly respond to maintain cellular homeostasis and physiological demands by fine-tuning a plethora of mitochondria-associated processes. The outer mitochondrial membrane (OMM) proteins are central to mediating mitochondrial dynamics, coupled with continuous fission and fusion. These OMM proteins also have vital roles in controlling mitochondrial quality and serving as mitophagic receptors for autophagosome enclosure during mitophagy. Mitochondrial fission segregates impaired mitochondria in smaller sizes from the mother mitochondria and may favor mitophagy for eliminating damaged mitochondria. Conversely, mitochondrial fusion mixes dysfunctional mitochondria with healthy ones to repair the damage by diluting the impaired components and consequently prevents mitochondrial clearance via mitophagy. Despite extensive research efforts into deciphering the interplay between fission-fusion and mitophagy, it is still not clear whether mitochondrial fission essentially precedes mitophagy. In this review, we summarize recent breakthroughs concerning OMM research, and dissect the functions of these proteins in mitophagy from their traditional roles in fission-fusion dynamics, in response to distinct context, at the intersection of the OMM platform. These insights into the OMM proteins in mechanistic researches would lead to new aspects of mitochondrial quality control and better understanding of mitochondrial homeostasis intimately tied to pathological impacts.

摘要

大多数细胞应激反应都集中在线粒体。因此,线粒体必须迅速做出反应,通过微调大量与线粒体相关的过程来维持细胞内稳态和生理需求。外膜蛋白(OMM)是介导线粒体动力学的核心,与不断的分裂和融合相耦合。这些 OMM 蛋白在控制线粒体质量和作为自噬体在自噬期间包裹的噬线粒体受体方面也起着至关重要的作用。线粒体分裂将受损的线粒体从母线粒体中分离成较小的尺寸,可能有利于通过自噬来消除受损的线粒体。相反,线粒体融合将功能失调的线粒体与健康的线粒体混合在一起,通过稀释受损的成分来修复损伤,从而防止通过自噬进行线粒体清除。尽管人们在破译分裂-融合和自噬之间的相互作用方面进行了广泛的研究,但线粒体分裂是否先于自噬仍然不清楚。在这篇综述中,我们总结了最近关于 OMM 研究的突破,并从传统的分裂-融合动力学角色出发,剖析了这些蛋白质在自噬中的功能,以应对不同的背景,在 OMM 平台的交汇处。这些关于 OMM 蛋白在机制研究中的见解将为线粒体质量控制带来新的方面,并更好地理解与病理影响密切相关的线粒体动态平衡。

相似文献

1
Functions of outer mitochondrial membrane proteins: mediating the crosstalk between mitochondrial dynamics and mitophagy.
Cell Death Differ. 2021 Mar;28(3):827-842. doi: 10.1038/s41418-020-00657-z. Epub 2020 Nov 18.
2
A Molecular Approach to Mitophagy and Mitochondrial Dynamics.
Mol Cells. 2018 Jan 31;41(1):18-26. doi: 10.14348/molcells.2018.2277. Epub 2018 Jan 23.
3
Loss of MIEF1/MiD51 confers susceptibility to BAX-mediated cell death and PINK1-PRKN-dependent mitophagy.
Autophagy. 2019 Dec;15(12):2107-2125. doi: 10.1080/15548627.2019.1596494. Epub 2019 Mar 28.
4
Plant Mitophagy in Comparison to Mammals: What Is Still Missing?
Int J Mol Sci. 2021 Jan 27;22(3):1236. doi: 10.3390/ijms22031236.
5
The role of FUNDC1 in mitophagy, mitochondrial dynamics and human diseases.
Biochem Pharmacol. 2022 Mar;197:114891. doi: 10.1016/j.bcp.2021.114891. Epub 2021 Dec 27.
6
Molecular mechanisms mediating mitochondrial dynamics and mitophagy and their functional roles in the cardiovascular system.
J Mol Cell Cardiol. 2015 Jan;78:116-22. doi: 10.1016/j.yjmcc.2014.09.019. Epub 2014 Oct 7.
7
Caveolin-1 controls mitochondrial damage and ROS production by regulating fission - fusion dynamics and mitophagy.
Redox Biol. 2022 Jun;52:102304. doi: 10.1016/j.redox.2022.102304. Epub 2022 Apr 6.
8
BHRF1, a BCL2 viral homolog, disturbs mitochondrial dynamics and stimulates mitophagy to dampen type I IFN induction.
Autophagy. 2021 Jun;17(6):1296-1315. doi: 10.1080/15548627.2020.1758416. Epub 2020 May 13.
9
Mitochondrial dynamics in type 2 diabetes: Pathophysiological implications.
Redox Biol. 2017 Apr;11:637-645. doi: 10.1016/j.redox.2017.01.013. Epub 2017 Jan 16.

引用本文的文献

1
SFXN2 contributes mitochondrial dysfunction-induced apoptosis as a substrate of Parkin.
Front Cell Neurosci. 2025 Aug 14;19:1623747. doi: 10.3389/fncel.2025.1623747. eCollection 2025.
3
Molecular mechanisms of mitochondrial quality control.
Transl Neurodegener. 2025 Sep 1;14(1):45. doi: 10.1186/s40035-025-00505-5.
4
The mammalian protein MTCH1 can function as an insertase.
J Cell Sci. 2025 Aug 15;138(16). doi: 10.1242/jcs.263736.
5
Legionella effector LpPIP recruits protein phosphatase 1 to the mitochondria to induce dephosphorylation of outer membrane proteins.
PLoS Biol. 2025 Jul 23;23(7):e3003261. doi: 10.1371/journal.pbio.3003261. eCollection 2025 Jul.
8
Understanding the mechanisms of mitochondrial rewiring during viral infections.
J Gen Virol. 2025 Jul;106(7). doi: 10.1099/jgv.0.002128.
9
Amyloid-induced mitochondrial network disruption in neurons monitored by STED super-resolution imaging.
Front Cell Dev Biol. 2025 Jun 10;13:1610204. doi: 10.3389/fcell.2025.1610204. eCollection 2025.
10
Architecture and molecular machinery of skeletal myofibers: a systematic review of the structure-function relationships.
Front Cell Dev Biol. 2025 May 20;13:1602607. doi: 10.3389/fcell.2025.1602607. eCollection 2025.

本文引用的文献

1
Tollip coordinates Parkin-dependent trafficking of mitochondrial-derived vesicles.
EMBO J. 2020 Jun 2;39(11):e102539. doi: 10.15252/embj.2019102539. Epub 2020 Apr 20.
2
Global Landscape and Dynamics of Parkin and USP30-Dependent Ubiquitylomes in iNeurons during Mitophagic Signaling.
Mol Cell. 2020 Mar 5;77(5):1124-1142.e10. doi: 10.1016/j.molcel.2019.11.013.
3
Lysosomal degradation of depolarized mitochondria is rate-limiting in OPTN-dependent neuronal mitophagy.
Autophagy. 2020 May;16(5):962-964. doi: 10.1080/15548627.2020.1734330. Epub 2020 Mar 4.
4
Decision between mitophagy and apoptosis by Parkin via VDAC1 ubiquitination.
Proc Natl Acad Sci U S A. 2020 Feb 25;117(8):4281-4291. doi: 10.1073/pnas.1909814117. Epub 2020 Feb 11.
5
STX17 dynamically regulated by Fis1 induces mitophagy via hierarchical macroautophagic mechanism.
Nat Commun. 2019 May 3;10(1):2059. doi: 10.1038/s41467-019-10096-1.
6
Loss of MIEF1/MiD51 confers susceptibility to BAX-mediated cell death and PINK1-PRKN-dependent mitophagy.
Autophagy. 2019 Dec;15(12):2107-2125. doi: 10.1080/15548627.2019.1596494. Epub 2019 Mar 28.
7
A Mammalian Mitophagy Receptor, Bcl2-L-13, Recruits the ULK1 Complex to Induce Mitophagy.
Cell Rep. 2019 Jan 8;26(2):338-345.e6. doi: 10.1016/j.celrep.2018.12.050.
8
Syntaxin 17 regulates the localization and function of PGAM5 in mitochondrial division and mitophagy.
EMBO J. 2018 Nov 2;37(21). doi: 10.15252/embj.201798899. Epub 2018 Sep 20.
9
Parkin and PINK1 mitigate STING-induced inflammation.
Nature. 2018 Sep;561(7722):258-262. doi: 10.1038/s41586-018-0448-9. Epub 2018 Aug 22.
10
New mitochondrial DNA synthesis enables NLRP3 inflammasome activation.
Nature. 2018 Aug;560(7717):198-203. doi: 10.1038/s41586-018-0372-z. Epub 2018 Jul 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验