Suppr超能文献

一种预测临床I-II期食管鳞状细胞癌患者病理性淋巴结转移的人工神经网络模型。

An artificial neural network model predicting pathologic nodal metastases in clinical stage I-II esophageal squamous cell carcinoma patients.

作者信息

Liu Xiao-Long, Shao Chen-Ye, Sun Lei, Liu Yi-Yang, Hu Li-Wen, Cong Zhuang-Zhuang, Xu Yang, Wang Rong-Chun, Yi Jun, Wang Wei

机构信息

Department of Cardiothoracic Surgery, Jinling Hospital, Jinling School of Clinical Medicine, Nanjing Medical University, Nanjing, China.

Department of Cardiothoracic Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China.

出版信息

J Thorac Dis. 2020 Oct;12(10):5580-5592. doi: 10.21037/jtd-20-1956.

Abstract

BACKGROUND

Current preoperative staging for lymph nodal status remains inaccurate. The purpose of this study was to build an artificial neural network (ANN) model to predict pathologic nodal involvement in clinical stage I-II esophageal squamous cell carcinoma (ESCC) patients and then validated the performance of the model.

METHODS

A total of 523 patients (training set: 350; test set: 173) with clinical staging I-II ESCC who underwent esophagectomy and reconstruction were enrolled in this study. Their post-surgical pathological results were assessed and analysed. An ANN model was established for predicting pathologic nodal positive patients in the training set, which was validated in the test set. A receiver operating characteristic (ROC) curve was also created to illustrate the performance of the predictive model.

RESULTS

Of the enrolled 523 patients with ESCC, 41.3% of the patients were confirmed pathologic nodal positive (216/523). The ANN staging system identified the tumour invasion depth, tumour length, dysphagia, tumour differentiation and lymphovascular invasion (LVI) as predictors for pathologic lymph node metastases. The C-index for the ANN model verified in the test set was 0.852, which demonstrated that the ANN model had a good predictive performance.

CONCLUSIONS

The ANN model presented good performance for predicting pathologic lymph node metastasis and added indicators not included in current staging criteria and might help improve the staging strategies.

摘要

背景

目前用于评估淋巴结状态的术前分期仍不准确。本研究旨在构建一个人工神经网络(ANN)模型,以预测临床I-II期食管鳞状细胞癌(ESCC)患者的病理淋巴结受累情况,并验证该模型的性能。

方法

本研究纳入了523例接受食管切除术和重建术的临床分期为I-II期的ESCC患者(训练集:350例;测试集:173例)。对他们的术后病理结果进行评估和分析。在训练集中建立了一个用于预测病理淋巴结阳性患者的ANN模型,并在测试集中进行验证。还绘制了受试者工作特征(ROC)曲线以说明预测模型的性能。

结果

在纳入的523例ESCC患者中,41.3%的患者被确诊为病理淋巴结阳性(216/523)。ANN分期系统将肿瘤浸润深度、肿瘤长度、吞咽困难、肿瘤分化程度和淋巴管浸润(LVI)确定为病理淋巴结转移的预测指标。在测试集中验证的ANN模型的C指数为0.852,这表明ANN模型具有良好的预测性能。

结论

ANN模型在预测病理淋巴结转移方面表现良好,增加了当前分期标准中未包括的指标,可能有助于改进分期策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef95/7656440/721427759cf2/jtd-12-10-5580-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验