Suppr超能文献

在原发性前列腺癌患者的GaPSMA-11 PET图像中发现隐匿性——视觉上不可检测的前列腺内肿瘤病变的患病率、特征及基于放射组学特征的检测

Uncovering the invisible-prevalence, characteristics, and radiomics feature-based detection of visually undetectable intraprostatic tumor lesions in GaPSMA-11 PET images of patients with primary prostate cancer.

作者信息

Zamboglou Constantinos, Bettermann Alisa S, Gratzke Christian, Mix Michael, Ruf Juri, Kiefer Selina, Jilg Cordula A, Benndorf Matthias, Spohn Simon, Fassbender Thomas F, Bronsert Peter, Chen Mengxia, Guo Hongqian, Wang Feng, Qiu Xuefeng, Grosu Anca-Ligia

机构信息

Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Robert-Koch Straße 3, 79106, Freiburg, Germany.

German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany.

出版信息

Eur J Nucl Med Mol Imaging. 2021 Jun;48(6):1987-1997. doi: 10.1007/s00259-020-05111-3. Epub 2020 Nov 18.

Abstract

INTRODUCTION

Primary prostate cancer (PCa) can be visualized on prostate-specific membrane antigen positron emission tomography (PSMA-PET) with high accuracy. However, intraprostatic lesions may be missed by visual PSMA-PET interpretation. In this work, we quantified and characterized the intraprostatic lesions which have been missed by visual PSMA-PET image interpretation. In addition, we investigated whether PSMA-PET-derived radiomics features (RFs) could detect these lesions.

METHODOLOGY

This study consists of two cohorts of primary PCa patients: a prospective training cohort (n = 20) and an external validation cohort (n = 52). All patients underwent Ga-PSMA-11 PET/CT and histology sections were obtained after surgery. PCa lesions missed by visual PET image interpretation were counted and their International Society of Urological Pathology score (ISUP) was obtained. Finally, 154 RFs were derived from the PET images and the discriminative power to differentiate between prostates with or without visually undetectable lesions was assessed and areas under the receiver-operating curve (ROC-AUC) as well as sensitivities/specificities were calculated.

RESULTS

In the training cohort, visual PET image interpretation missed 134 tumor lesions in 60% (12/20) of the patients, and of these patients, 75% had clinically significant (ISUP > 1) PCa. The median diameter of the missed lesions was 2.2 mm (range: 1-6). Standard clinical parameters like the NCCN risk group were equally distributed between patients with and without visually missed lesions (p < 0.05). Two RFs (local binary pattern (LBP) size-zone non-uniformality normalized and LBP small-area emphasis) were found to perform excellently in visually unknown PCa detection (Mann-Whitney U: p < 0.01, ROC-AUC: ≥ 0.93). In the validation cohort, PCa was missed in 50% (26/52) of the patients and 77% of these patients possessed clinically significant PCa. The sensitivities of both RFs in the validation cohort were ≥ 0.8.

CONCLUSION

Visual PSMA-PET image interpretation may miss small but clinically significant PCa in a relevant number of patients and RFs can be implemented to uncover them. This could be used for guiding personalized treatments.

摘要

引言

原发性前列腺癌(PCa)在前列腺特异性膜抗原正电子发射断层扫描(PSMA-PET)上能够以高精度显示。然而,前列腺内病变可能会因PSMA-PET的视觉解读而被遗漏。在本研究中,我们对PSMA-PET视觉图像解读遗漏的前列腺内病变进行了定量和特征分析。此外,我们还研究了PSMA-PET衍生的放射组学特征(RFs)能否检测出这些病变。

方法

本研究包括两个原发性PCa患者队列:一个前瞻性训练队列(n = 20)和一个外部验证队列(n = 52)。所有患者均接受了Ga-PSMA-11 PET/CT检查,并在术后获取了组织学切片。对视觉PET图像解读遗漏的PCa病变进行计数,并获取其国际泌尿病理学会评分(ISUP)。最后,从PET图像中提取了154个RFs,并评估了其区分有无视觉上不可检测病变的前列腺的判别能力,计算了受试者操作特征曲线下面积(ROC-AUC)以及敏感性/特异性。

结果

在训练队列中,视觉PET图像解读在60%(12/20)的患者中遗漏了134个肿瘤病变,在这些患者中,75%患有临床意义显著(ISUP>1)的PCa。遗漏病变的中位直径为2.2毫米(范围:1-6毫米)。NCCN风险组等标准临床参数在有和没有视觉上遗漏病变的患者之间分布相同(p<0.05)。发现两个RFs(局部二值模式(LBP)大小区域非均匀性归一化和LBP小区域强调)在视觉上未知的PCa检测中表现出色(曼-惠特尼U检验:p<0.01,ROC-AUC:≥0.93)。在验证队列中,50%(26/52)的患者PCa被遗漏,其中77%的患者患有临床意义显著的PCa。两个RFs在验证队列中的敏感性均≥0.8。

结论

PSMA-PET视觉图像解读可能会在相当数量的患者中遗漏小的但具有临床意义的PCa,并且可以采用RFs来发现它们。这可用于指导个性化治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6833/8113179/1bcfc4151e0a/259_2020_5111_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验