Maes Justine, Gesquière Simon, Maes Alex, Sathekge Mike, Van de Wiele Christophe
Department of Nuclear Medicine, AZ Groeninge, 8500 Kortrijk, Belgium.
Department of Nuclear Medicine, University Hospital Ghent, 9000 Ghent, Belgium.
Cancers (Basel). 2024 Oct 1;16(19):3369. doi: 10.3390/cancers16193369.
Positron emission tomography (PET) using radiolabeled prostate-specific membrane antigen targeting PET-imaging agents has been increasingly used over the past decade for imaging and directing prostate carcinoma treatment. Here, we summarize the available literature data on radiomics and machine learning using these imaging agents in prostate carcinoma. Gleason scores derived from biopsy and after resection are discordant in a large number of prostate carcinoma patients. Available studies suggest that radiomics and machine learning applied to PSMA-radioligand avid primary prostate carcinoma might be better performing than biopsy-based Gleason-scoring and could serve as an alternative for non-invasive GS characterization. Furthermore, it may allow for the prediction of biochemical recurrence with a net benefit for clinical utilization. Machine learning based on PET/CT radiomics features was also shown to be able to differentiate benign from malignant increased tracer uptake on PSMA-targeting radioligand PET/CT examinations, thus paving the way for a fully automated image reading in nuclear medicine. As for prediction to treatment outcome following Lu-PSMA therapy and overall survival, a limited number of studies have reported promising results on radiomics and machine learning applied to PSMA-targeting radioligand PET/CT images for this purpose. Its added value to clinical parameters warrants further exploration in larger datasets of patients.
在过去十年中,使用放射性标记的前列腺特异性膜抗原靶向PET成像剂的正电子发射断层扫描(PET)越来越多地用于前列腺癌的成像和治疗指导。在此,我们总结了关于在前列腺癌中使用这些成像剂的放射组学和机器学习的现有文献数据。在大量前列腺癌患者中,活检得出的Gleason评分与切除后的评分不一致。现有研究表明,应用于PSMA放射性配体摄取阳性的原发性前列腺癌的放射组学和机器学习可能比基于活检的Gleason评分表现更好,并且可以作为非侵入性GS特征描述的替代方法。此外,它可能有助于预测生化复发,对临床应用有净益处。基于PET/CT放射组学特征的机器学习还显示,能够在PSMA靶向放射性配体PET/CT检查中区分良性和恶性的示踪剂摄取增加,从而为核医学中的全自动图像解读铺平了道路。至于预测Lu-PSMA治疗后的治疗结果和总生存期,少数研究报告了将放射组学和机器学习应用于PSMA靶向放射性配体PET/CT图像在这方面取得的有前景的结果。其对临床参数的附加价值值得在更大的患者数据集中进一步探索。