Suppr超能文献

拓展超长碳-碳键和超短氢-氢非键接触极限的分子设计。

Molecular designs for expanding the limits of ultralong C-C bonds and ultrashort HH non-bonded contacts.

作者信息

Mandal Nilangshu, Datta Ayan

机构信息

School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Jadavpur - 700032, Kolkata, West Bengal, India.

出版信息

Chem Commun (Camb). 2020 Dec 21;56(98):15377-15386. doi: 10.1039/d0cc06690g. Epub 2020 Nov 19.

Abstract

Recent experiments have reported the formation of very long C-C bonds (d > 1.80 Å) and very short HH non-bonded contacts (d < 1.5 Å) in several sets of molecules. Both these rare phenomena arise due to specific donor-acceptor interactions and London dispersion interactions respectively. Favorable negative hyperconjugation, namely HN(lone-pair) →σ*(C-C), creates an ultralong C-C bond in diamino-o-carborane with d > 1.829 Å and a planar amine reminiscent of a transition-state like structure for ammonia inversion. The small and narrow barrier favours rapid inversion through quantum mechanical tunnelling (QMT) and produces a translationally averaged planar amine as observed in the experiments. On the other hand, designing specific confined molecular cavities or chambers like in,in-bis(hydrosilane) or its germanane analogs furnishes an ultrashort HH distance = 1.47 Å and 1.38 Å respectively. The predisposition of such closely placed HH contacts arises from the rather effective attractive dispersion interactions between them. Controlling the strength of the dispersion interactions provides a rich landscape for realizing such close HH distances. Molecular design ably assisted by computational modeling to further tune these interactions provides new avenues to break the glass-ceilings of ultralong C-C bonds or ultrashort HH contacts. Dispersion-corrected DFT calculations and ab initio molecular dynamics simulations generate a large library of such unique features in a diverse class of molecules. This feature article highlights the design principles to realize hitherto longest C-C bonds/shortest HH contacts.

摘要

最近的实验报道了在几组分子中形成了非常长的碳 - 碳键(键长d > 1.80 Å)和非常短的氢 - 氢非键接触(键长d < 1.5 Å)。这两种罕见现象分别是由于特定的供体 - 受体相互作用和伦敦色散相互作用引起的。有利的负超共轭作用,即HN(孤对电子)→σ*(C - C),在二氨基 - 邻碳硼烷中形成了键长d > 1.829 Å的超长碳 - 碳键,并且形成了一个平面胺,类似于氨翻转的过渡态结构。小而窄的势垒有利于通过量子力学隧穿(QMT)进行快速翻转,并产生实验中观察到的平移平均平面胺。另一方面,设计特定的受限分子腔或室,如内,内 - 双(硅烷)或其锗烷类似物,分别提供了1.47 Å和1.38 Å的超短氢 - 氢距离。这种紧密排列的氢 - 氢接触的倾向源于它们之间相当有效的吸引色散相互作用。控制色散相互作用的强度为实现如此短的氢 - 氢距离提供了丰富的可能性。在计算建模的有力辅助下进行分子设计以进一步调节这些相互作用,为突破超长碳 - 碳键或超短氢 - 氢接触的限制提供了新途径。色散校正的密度泛函理论(DFT)计算和从头算分子动力学模拟在各种不同类型的分子中生成了大量此类独特特征的库。这篇专题文章强调了实现迄今最长碳 - 碳键/最短氢 - 氢接触的设计原则。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验