Division of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, University of California, Davis, Davis, CA.
Department of Physiology and Cell Biology, University of Nevada, Reno, Reno, NV.
J Gen Physiol. 2020 Dec 7;152(12). doi: 10.1085/jgp.202012667.
Calmodulin (CaM) plays a critical role in intracellular signaling and regulation of Ca2+-dependent proteins and ion channels. Mutations in CaM cause life-threatening cardiac arrhythmias. Among the known CaM targets, small-conductance Ca2+-activated K+ (SK) channels are unique, since they are gated solely by beat-to-beat changes in intracellular Ca2+. However, the molecular mechanisms of how CaM mutations may affect the function of SK channels remain incompletely understood. To address the structural and functional effects of these mutations, we introduced prototypical human CaM mutations in human induced pluripotent stem cell-derived cardiomyocyte-like cells (hiPSC-CMs). Using structural modeling and molecular dynamics simulation, we demonstrate that human calmodulinopathy-associated CaM mutations disrupt cardiac SK channel function via distinct mechanisms. CaMD96V and CaMD130G mutants reduce SK currents through a dominant-negative fashion. By contrast, specific mutations replacing phenylalanine with leucine result in conformational changes that affect helix packing in the C-lobe, which disengage the interactions between apo-CaM and the CaM-binding domain of SK channels. Distinct mutant CaMs may result in a significant reduction in the activation of the SK channels, leading to a decrease in the key Ca2+-dependent repolarization currents these channels mediate. The findings in this study may be generalizable to other interactions of mutant CaMs with Ca2+-dependent proteins within cardiac myocytes.
钙调蛋白(CaM)在细胞内信号转导和调节 Ca2+依赖性蛋白和离子通道中起着关键作用。CaM 的突变会导致危及生命的心律失常。在已知的 CaM 靶标中,小电导钙激活钾(SK)通道是独特的,因为它们仅由细胞内 Ca2+的逐搏变化来开启。然而,CaM 突变如何影响 SK 通道功能的分子机制仍不完全清楚。为了解决这些突变的结构和功能影响,我们在人诱导多能干细胞衍生的心肌细胞样细胞(hiPSC-CMs)中引入了典型的人类 CaM 突变。通过结构建模和分子动力学模拟,我们证明人类钙调蛋白病相关的 CaM 突变通过不同的机制破坏心脏 SK 通道功能。CaMD96V 和 CaMD130G 突变通过显性负性作用降低 SK 电流。相比之下,用亮氨酸取代苯丙氨酸的特定突变会导致构象变化,从而影响 C 端螺旋的包装,从而使 apo-CaM 与 SK 通道的 CaM 结合域之间的相互作用脱开。不同的突变型 CaM 可能导致 SK 通道的激活显著减少,从而降低这些通道介导的关键 Ca2+依赖性复极化电流。本研究中的发现可能适用于突变型 CaM 与心肌细胞内其他 Ca2+依赖性蛋白的相互作用。