Department of Statistics, The Pennsylvania State University, State College, PA 16802, USA; Department of Statistics, University of Wisconsin-Madison, Madison, WI 53706, USA.
Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
Cell Syst. 2021 Jan 20;12(1):92-101.e8. doi: 10.1016/j.cels.2020.10.007. Epub 2020 Nov 18.
Machine learning can infer how protein sequence maps to function without requiring a detailed understanding of the underlying physical or biological mechanisms. It is challenging to apply existing supervised learning frameworks to large-scale experimental data generated by deep mutational scanning (DMS) and related methods. DMS data often contain high-dimensional and correlated sequence variables, experimental sampling error and bias, and the presence of missing data. Notably, most DMS data do not contain examples of negative sequences, making it challenging to directly estimate how sequence affects function. Here, we develop a positive-unlabeled (PU) learning framework to infer sequence-function relationships from large-scale DMS data. Our PU learning method displays excellent predictive performance across ten large-scale sequence-function datasets, representing proteins of different folds, functions, and library types. The estimated parameters pinpoint key residues that dictate protein structure and function. Finally, we apply our statistical sequence-function model to design highly stabilized enzymes.
机器学习可以推断蛋白质序列如何映射到功能,而无需深入了解潜在的物理或生物机制。将现有的监督学习框架应用于深度突变扫描 (DMS) 和相关方法生成的大规模实验数据具有挑战性。DMS 数据通常包含高维且相关的序列变量、实验采样误差和偏差,以及存在缺失数据。值得注意的是,大多数 DMS 数据不包含负序列的示例,因此难以直接估计序列如何影响功能。在这里,我们开发了一个正无标记 (PU) 学习框架,以便从大规模 DMS 数据中推断序列-功能关系。我们的 PU 学习方法在十个大型序列-功能数据集上表现出出色的预测性能,这些数据集代表了不同折叠、功能和文库类型的蛋白质。估计的参数指出了决定蛋白质结构和功能的关键残基。最后,我们将我们的统计序列-功能模型应用于设计高度稳定的酶。