Suppr超能文献

聚(酸酐-酯)吉西他滨:用于癌症治疗的高载药可水解聚合物药物的合成与粒子工程。

Poly(anhydride-ester) gemcitabine: Synthesis and particle engineering of a high payload hydrolysable polymeric drug for cancer therapy.

机构信息

Department of Pharmaceutics and Center for Pharmaceutical Engineering and Sciences - School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23284, United States.

Department of Pharmaceutics and Center for Pharmaceutical Engineering and Sciences - School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23284, United States.

出版信息

J Control Release. 2021 Feb 10;330:1178-1190. doi: 10.1016/j.jconrel.2020.11.025. Epub 2020 Nov 17.

Abstract

Gemcitabine (GMT) is a nucleoside analog used in the treatment of a variety of solid tumors. GMT was chemically modified with a hydrolysable linker, and subsequently incorporated into a poly(anhydride-ester) backbone via melt-polymerization, with the active antimetabolite GMT, thus, becoming the repeat unit that makes up this new material, a biodegradable polymer. Characterization of the structure of polymeric GMT (polyGMT) revealed the incorporation of an average 26 molecules of GMT per polymer chain, which corresponds to a drug loading of 58%w/w. The glass transition temperature of the formed polyGMT was determined to be 123 °C. PolyGMT was engineered into nanoparticles (NPs) using a dialysis-based method, with a resulting geometric diameter of 206 ± 38 nm. The particles are easily dispersible and stable in aqueous-based media, with a hydrodynamic diameter of 229 ± 28 nm. The prepared hydrolysable polyGMT NPs demonstrate ultra-long release profile due to the hydrophobic nature of the linker, and as per characteristic erosion behavior of polymers with anhydride-ester bonds. Accelerated in vitro release studies demonstrate the recovery of free GMT upon hydrolysis, with biological activity as assessed by cytotoxicity assays performed in adenocarcinoma human alveolar basal epithelial (A549) and highly metastatic murine osteosarcoma (K7M2) cells lines. The characteristics of polyGMT, including its thermal properties and built in hydrolysable structure, are thus conducive for use in the preparation of drug delivery systems. Engineered structures prepared with polyGMT can maintain their morphology at ambient and physiologically relevant conditions, and free GMT is recovered as the anhydride and ester bonds are hydrolyzed. This work is innovative as for the first time we demonstrate the ability to polymerize GMT in a hydrolysable polymer structure, and engineer NPs of this polymeric chemotherapy. The synthetic strategy allows for tuning of the polymer hydrophobicity and thus potentialize its behavior, including degradation profile, by varying the linker chemistry. Such controlled release hydrolysable polymers with very high drug loading and controlled erosion profiles are relevant as they may offer new opportunities in drug delivery applications for the treatment of malignant neoplasms.

摘要

盐酸吉西他滨(GMT)是一种用于治疗多种实体瘤的核苷类似物。GMT 经水解连接子化学修饰后,通过熔融聚合掺入聚(酸酐-酯)主链,将活性抗代谢物 GMT 作为重复单元,构成这种新材料,即可生物降解聚合物。聚合 GMT(polyGMT)的结构特征表明,每条聚合物链平均含有 26 个 GMT 分子,药物负载为 58%w/w。形成的 polyGMT 的玻璃化转变温度确定为 123°C。采用基于透析的方法将 polyGMT 制成纳米颗粒(NPs),得到的几何直径为 206±38nm。这些颗粒在水基介质中易于分散且稳定,水动力直径为 229±28nm。由于连接子的疏水性,以及具有酸酐-酯键的聚合物的特征侵蚀行为,所制备的可水解 polyGMT NPs 表现出超长的释放曲线。通过在腺癌细胞腺癌肺泡基底上皮(A549)和高转移性鼠骨肉瘤(K7M2)细胞系中进行细胞毒性测定,评估生物活性,加速体外释放研究表明,连接水解后可回收游离的 GMT。polyGMT 的特性,包括其热性能和内置的可水解结构,有利于用于制备药物输送系统。用 polyGMT 制备的结构可以在环境和生理相关条件下保持其形态,并且随着酸酐和酯键的水解,游离的 GMT 被回收。这项工作是创新的,因为我们首次展示了将 GMT 聚合到可水解聚合物结构中,并对这种聚合化疗药物进行 NPs 工程的能力。该合成策略允许通过改变连接子化学来调整聚合物的疏水性,从而优化其行为,包括降解曲线。这种具有高载药量和可控侵蚀特性的控释可水解聚合物在恶性肿瘤治疗的药物输送应用中具有重要意义,因为它们可能提供新的机会。

相似文献

1
Poly(anhydride-ester) gemcitabine: Synthesis and particle engineering of a high payload hydrolysable polymeric drug for cancer therapy.
J Control Release. 2021 Feb 10;330:1178-1190. doi: 10.1016/j.jconrel.2020.11.025. Epub 2020 Nov 17.
3
Controlled release from aspirin based linear biodegradable poly(anhydride esters) for anti-inflammatory activity.
Int J Pharm. 2017 Aug 7;528(1-2):732-740. doi: 10.1016/j.ijpharm.2017.06.065. Epub 2017 Jun 19.
4
Synthesis and degradation characteristics of salicylic acid-derived poly(anhydride-esters).
Biomaterials. 2000 Oct;21(19):1941-6. doi: 10.1016/s0142-9612(00)00073-9.
5
Polymeric nanoparticulate system augmented the anticancer therapeutic efficacy of gemcitabine.
J Drug Target. 2009 Sep;17(8):586-98. doi: 10.1080/10611860903105739.
6
Photocrosslinked poly(ester anhydride)s for peptide delivery: Effect of oligomer hydrophobicity on PYY3-36 delivery.
Eur J Pharm Biopharm. 2012 Jan;80(1):33-8. doi: 10.1016/j.ejpb.2011.09.011. Epub 2011 Sep 22.
8
Poly(ester-anhydrides) Derived from Esters of Hydroxy Acid and Cyclic Anhydrides.
Biomacromolecules. 2022 Aug 8;23(8):3417-3428. doi: 10.1021/acs.biomac.2c00542. Epub 2022 Jul 26.
9
Poly(ortho ester) biodegradable polymer systems.
Methods Enzymol. 1985;112:422-36. doi: 10.1016/s0076-6879(85)12033-1.

引用本文的文献

2
Stimulus Responsive Nanocarrier for Enhanced Antitumor Responses Against Hepatocellular Carcinoma.
Int J Nanomedicine. 2024 Dec 10;19:13339-13355. doi: 10.2147/IJN.S486465. eCollection 2024.
3
Research Progress of Nanomaterials in Chemotherapy of Osteosarcoma.
Orthop Surg. 2023 Sep;15(9):2244-2259. doi: 10.1111/os.13806. Epub 2023 Jul 5.
4
Prodrug approaches for the development of a long-acting drug delivery systems.
Adv Drug Deliv Rev. 2023 Jul;198:114860. doi: 10.1016/j.addr.2023.114860. Epub 2023 May 7.

本文引用的文献

1
Small molecule inhibitors in pancreatic cancer.
RSC Med Chem. 2020 Jan 24;11(2):164-183. doi: 10.1039/c9md00447e. eCollection 2020 Feb 1.
2
A guide to cancer immunotherapy: from T cell basic science to clinical practice.
Nat Rev Immunol. 2020 Nov;20(11):651-668. doi: 10.1038/s41577-020-0306-5. Epub 2020 May 20.
3
From micro to nano: evolution and impact of drug delivery in treating disease.
Drug Deliv Transl Res. 2020 Jun;10(3):567-570. doi: 10.1007/s13346-020-00769-6.
4
Developing Biodegradable Nanoparticles Loaded with Mometasone Furoate for Potential Nasal Drug Delivery.
ACS Omega. 2020 Mar 25;5(13):7432-7439. doi: 10.1021/acsomega.0c00111. eCollection 2020 Apr 7.
5
Dendrimer Conjugation Enhances Tumor Penetration and Efficacy of Doxorubicin in Extracellular Matrix-Expressing 3D Lung Cancer Models.
Mol Pharm. 2020 May 4;17(5):1648-1662. doi: 10.1021/acs.molpharmaceut.0c00083. Epub 2020 Apr 15.
7
Polymeric modification of gemcitabine via cyclic acetal linkage for enhanced anticancer potency with negligible side effects.
Biomaterials. 2020 Mar;235:119804. doi: 10.1016/j.biomaterials.2020.119804. Epub 2020 Jan 22.
8
Cancer statistics, 2020.
CA Cancer J Clin. 2020 Jan;70(1):7-30. doi: 10.3322/caac.21590. Epub 2020 Jan 8.
9
Clinical applications of nanomedicine in cancer therapy.
Drug Discov Today. 2020 Jan;25(1):107-125. doi: 10.1016/j.drudis.2019.09.017. Epub 2019 Oct 3.
10
Nanoparticle Interactions with the Tumor Microenvironment.
Bioconjug Chem. 2019 Sep 18;30(9):2247-2263. doi: 10.1021/acs.bioconjchem.9b00448. Epub 2019 Sep 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验