Suppr超能文献

一种具有增强性能的土著细菌,可在极端碱性条件下促进微生物诱导的 Ca 碳酸生物矿化,用于混凝土和土壤改良行业。

An indigenous bacterium with enhanced performance of microbially-induced Ca-carbonate biomineralization under extreme alkaline conditions for concrete and soil-improvement industries.

机构信息

Centro de Biotecnología Profesor Alberto Ruiz - CBAR, Universidad Católica del Norte, Antofagasta, Chile.

Departamento de Gestión de la Construcción, Universidad Católica del Norte, Antofagasta, Chile.

出版信息

Acta Biomater. 2021 Jan 15;120:304-317. doi: 10.1016/j.actbio.2020.11.016. Epub 2020 Nov 16.

Abstract

The advantages of microbial induced carbonate mineralization for soil-stabilization and building-material industries are under extensive investigation. The pH is one of the influential parameters on the desired calcium carbonate mineralization due to the resulting textures of this mineral. Moreover, the decrease in microbial growth under the extreme alkaline environment compatible with the sustainability of concrete has been the bottleneck for an effective application of Microbial Induced Carbonate Precipitation (MICP) in the concrete industry. Microbial consortia have shown more robustness in their resistance to environmental fluctuations than pure cultures. In addition, microorganisms obtained from alkaline environments could facilitate their adaptation to extreme alkalinity. The aim of this study was to obtain urease producing bacteria (UPB) able to maintain a high MICP performance under extremely alkaline conditions compatible with concrete by adapting native microorganisms obtained from extreme environments. The growth performance, urease activity, strength of the generated biocement, and CaCO mineralogy were compared with the best-performer urease-producing bacteria (UPB), S. pasteurii DSMZ 33. The native bacteria presented a similar performance in growth and urease activity than S. pasteurii under extreme alkaline conditions (pH 12.5). However, the generated biocement of native Sporosarcina sp. achieved 461 % more unconfined compressive strength (UCS) and 120 % more CaCO content than the biocement generated by S. pasteurii DSMZ 33. The careful adaptation process performed in this study for native UPB and S. pasteurii DSMZ 33 is an interesting approach with promising and projectable results for future engineering and biotechnological applications. These results have important implications for the design of engineering solutions involving MICP. STATEMENT OF SIGNIFICANCE: A consolidated and strong biocement was generated by a native species obtained from extreme ecosystems in an effort of bioprospecting to enhance the performance of biotechnological solutions for geotechnical applications in the concrete and soil-improvement industries. Biocement generated by the native species was stronger than the generated by one of the best-described biocementation performers. This native species was able to actively growing and do perform microbial-induced-carbonate-mineralization under extreme alkalinity conditions after a careful laboratory adaptation process. The native species presented unique and differentiating traits that gave it a better adaptability and biocementation performance. The same occurs with a priceless microbial diversity inhabiting little explored and unprotected extreme ecosystems. Extreme environments house a fascinating biodiversity with potential value for ecosystem services.

摘要

微生物诱导碳酸钙矿化在土壤稳定和建筑材料行业的优势正在得到广泛研究。由于这种矿物的纹理,pH 值是影响碳酸钙矿化的影响因素之一。此外,由于与混凝土的可持续性兼容的极端碱性环境会抑制微生物的生长,因此微生物诱导碳酸钙沉淀(MICP)在混凝土行业中的有效应用一直是一个瓶颈。与纯培养物相比,微生物群落显示出更强的抗环境波动能力。此外,从碱性环境中获得的微生物可以促进其适应极端碱性环境。本研究的目的是通过适应从极端环境中获得的天然微生物,获得能够在与混凝土兼容的极端碱性条件下保持高 MICP 性能的产脲酶细菌(UPB)。将比较生长性能、脲酶活性、生成的生物水泥强度和 CaCO3 矿物学与性能最佳的产脲酶细菌(UPB),即 S. pasteurii DSMZ 33。在极端碱性条件(pH 12.5)下,与 S. pasteurii 相比,天然细菌的生长和脲酶活性表现相似。然而,与 S. pasteurii DSMZ 33 生成的生物水泥相比,天然 Sporosarcina sp. 生成的生物水泥的无侧限抗压强度(UCS)提高了 461%,CaCO3 含量提高了 120%。在这项研究中,对天然 UPB 和 S. pasteurii DSMZ 33 进行了仔细的适应性处理,这是一种有趣的方法,对于未来的工程和生物技术应用具有有希望和可预测的结果。这些结果对于涉及 MICP 的工程解决方案的设计具有重要意义。

意义声明

从极端生态系统中获得的天然种属进行了综合和强化生物水泥的生成,这是一种生物勘探努力,旨在提高生物技术解决方案在混凝土和土壤改良行业中的岩土应用性能。与一种描述最好的生物胶结性能的生物水泥相比,由天然种属生成的生物水泥更强。在经过仔细的实验室适应过程后,该天然种属能够在极端碱性条件下主动生长并进行微生物诱导的碳酸钙矿化。该天然种属具有独特且不同的特征,使其具有更好的适应性和生物胶结性能。同样的情况也发生在一个无价的微生物多样性中,它栖息在很少被探索和不受保护的极端生态系统中。极端环境中蕴藏着具有潜在生态系统服务价值的迷人生物多样性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验