Srivatsa Shreyas, Paćko Paweł, Mishnaevsky Leon, Uhl Tadeusz, Grabowski Krzysztof
Academic Center for Materials and Nanotechnology, AGH University of Science and Technology, 30-059 Krakow, Poland.
Department of Robotics and Mechatronics, AGH University of Science and Technology, 30-059 Krakow, Poland.
Materials (Basel). 2020 Nov 17;13(22):5189. doi: 10.3390/ma13225189.
In this work, the deformation behavior of MXene-based polymer composites with bioinspired brick and mortar structures is analyzed. MXene/Polymer nanocomposites are modeled at microscale for bioinspired configurations of nacre-mimetic brick-and-mortar assembly structure. MXenes (brick) with polymer matrix (mortar) are modeled using classical analytical methods and numerical methods based on finite elements (FE). The analytical methods provide less accurate estimation of elastic properties compared to the numerical one. MXene nanocomposite models analyzed with the FE method provide estimates of elastic constants in the same order of magnitude as literature-reported experimental results. Bioinspired design of MXene nanocomposites results in an effective increase of Young's modulus of the nanocomposite by 25.1% and strength (maximum stress capacity within elastic limits) enhanced by 42.3%. The brick and mortar structure of the nanocomposites leads to an interlocking mechanism between MXene fillers in the polymer matrix, resulting in effective load transfer, good strength, and damage resistance. This is demonstrated in this paper by numerical analysis of MXene nanocomposites subjected to quasi-static loads.
在这项工作中,对具有仿生砖和砂浆结构的基于MXene的聚合物复合材料的变形行为进行了分析。MXene/聚合物纳米复合材料在微观尺度上针对珍珠母模拟砖-砂浆组装结构的仿生构型进行建模。使用基于有限元(FE)的经典分析方法和数值方法对具有聚合物基体(砂浆)的MXene(砖)进行建模。与数值方法相比,分析方法对弹性性能的估计准确性较低。用有限元方法分析的MXene纳米复合材料模型提供的弹性常数估计值与文献报道的实验结果处于同一数量级。MXene纳米复合材料的仿生设计使纳米复合材料的杨氏模量有效提高了25.1%,强度(弹性极限内的最大应力容量)提高了42.3%。纳米复合材料的砖和砂浆结构导致聚合物基体中MXene填料之间形成联锁机制,从而实现有效的载荷传递、良好的强度和抗损伤能力。本文通过对承受准静态载荷的MXene纳米复合材料的数值分析证明了这一点。