Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
Proc Natl Acad Sci U S A. 2020 Dec 1;117(48):30476-30487. doi: 10.1073/pnas.2007443117. Epub 2020 Nov 19.
None of the current superresolution microscopy techniques can reliably image the changes in endogenous protein nanoclustering dynamics associated with specific conformations in live cells. Single-domain nanobodies have been invaluable tools to isolate defined conformational states of proteins, and we reasoned that expressing these nanobodies coupled to single-molecule imaging-amenable tags could allow superresolution analysis of endogenous proteins in discrete conformational states. Here, we used anti-GFP nanobodies tagged with photoconvertible mEos expressed as intrabodies, as a proof-of-concept to perform single-particle tracking on a range of GFP proteins expressed in live cells, neurons, and small organisms. We next expressed highly specialized nanobodies that target conformation-specific endogenous β-adrenoreceptor (β-AR) in neurosecretory cells, unveiling real-time mobility behaviors of activated and inactivated endogenous conformers during agonist treatment in living cells. We showed that activated β- (Nb80) is highly immobile and organized in nanoclusters. The Gαs-GPCR complex detected with Nb37 displayed higher mobility with surprisingly similar nanoclustering dynamics to that of Nb80. Activated conformers are highly sensitive to dynamin inhibition, suggesting selective targeting for endocytosis. Inactivated β- (Nb60) molecules are also largely immobile but relatively less sensitive to endocytic blockade. Expression of single-domain nanobodies therefore provides a unique opportunity to capture highly transient changes in the dynamic nanoscale organization of endogenous proteins.
目前没有任何一种超分辨率显微镜技术能够可靠地成像内源性蛋白质纳米簇动力学的变化,而这些变化与活细胞中特定构象相关。单域纳米体已成为分离蛋白质特定构象状态的宝贵工具,我们推断,表达与单分子成像相容标签偶联的这些纳米体可以允许对离散构象状态的内源性蛋白质进行超分辨率分析。在这里,我们使用了标记有光可转化的 mEos 的抗 GFP 纳米体作为内抗体,作为一个概念验证,在活细胞、神经元和小型生物中表达的一系列 GFP 蛋白上进行了单颗粒跟踪。接下来,我们表达了针对神经分泌细胞中特定构象的内源性β-肾上腺素能受体(β-AR)的高度专业化纳米体,揭示了激动剂处理过程中活细胞中内源性激活和失活构象的实时迁移行为。我们表明,激活的β-(Nb80)是高度不活跃的,并且组织在纳米簇中。用 Nb37 检测到的 Gαs-GPCR 复合物显示出更高的流动性,并且与 Nb80 的纳米簇动力学惊人地相似。激活的构象对 dynamin 抑制非常敏感,这表明其选择性靶向内吞作用。失活的β-(Nb60)分子也基本上不活跃,但对胞吞阻断的敏感性相对较低。因此,单域纳米体的表达提供了一个独特的机会来捕获内源性蛋白质动态纳米尺度组织的高度瞬时变化。