Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA.
Sci Rep. 2020 Nov 19;10(1):20142. doi: 10.1038/s41598-020-77180-1.
Molecular crosstalk between intra-tumor blood vessels and tumor cells plays many critical roles in tumorigenesis and cancer metastasis. However, it has been very difficult to investigate the biochemical mechanisms underlying the overlapping, multifactorial processes that occur at the tumor-vascular interface using conventional murine models alone. Moreover, traditional two-dimensional (2D) culture models used in cancer research do not recapitulate aspects of the 3D tumor microenvironment. In the present study, we introduce a microfluidic model of the solid tumor-vascular interface composed of a human umbilical vein endothelial cell (HUVEC)-lined, perfusable, bioengineered blood vessel and tumor spheroids embedded in an extracellular matrix (ECM). We sought to optimize our model by varying the composition of the tumor spheroids (MDA-MB-231 breast tumor cells + mesenchymal stem cells (MSCs)/human lung fibroblasts (HLFs)/HUVECs) and the extracellular matrix (ECM: collagen, Matrigel, and fibrin gels with or without free HLFs) that we used. Our results indicate that culturing tumor spheroids containing MDA-MB-231 cells + HUVECs in an HLF-laden, fibrin-based ECM within our microfluidic device optimally (1) enhances the sprouting and migration of tumor spheroids, (2) promotes angiogenesis, (3) facilitates vascular invasion, and (4) preserves the structural integrity and functionality of HUVEC-lined microfluidic channels. This model may provide a platform for drug screening and mechanism studies on solid tumor interactions with functional blood vessels.
肿瘤内血管与肿瘤细胞之间的分子串扰在肿瘤发生和癌症转移中发挥着许多关键作用。然而,仅使用传统的小鼠模型,很难研究发生在肿瘤血管界面的重叠的、多因素的生化机制。此外,癌症研究中使用的传统二维(2D)培养模型无法再现 3D 肿瘤微环境的某些方面。在本研究中,我们引入了一个由人脐静脉内皮细胞(HUVEC)衬里、可灌注、生物工程化血管和嵌入细胞外基质(ECM)中的肿瘤球体组成的实体瘤血管界面的微流控模型。我们试图通过改变肿瘤球体的组成(MDA-MB-231 乳腺癌细胞+间充质干细胞(MSCs)/人肺成纤维细胞(HLFs)/HUVECs)和我们使用的细胞外基质(ECM:胶原、Matrigel 和含有或不含游离 HLFs 的纤维蛋白凝胶)来优化我们的模型。我们的结果表明,在我们的微流控装置中,将含有 MDA-MB-231 细胞+HUVECs 的肿瘤球体培养在富含 HLF 的纤维蛋白基 ECM 中可以最佳地(1)增强肿瘤球体的发芽和迁移,(2)促进血管生成,(3)促进血管侵犯,以及(4)保持 HUVEC 衬里的微流控通道的结构完整性和功能。该模型可能为实体瘤与功能性血管相互作用的药物筛选和机制研究提供一个平台。