Suppr超能文献

在铝毒性和磷饥饿胁迫期间,对[具体物种]上的[具体家族名称]以及其成员的基因共表达网络分析进行全面表征。 (注:原文中部分关键信息缺失,以上是根据格式要求尽量完整呈现的翻译内容)

Comprehensive characterization of the and families on and gene co-expression network analysis of its members during aluminium toxicity and phosphate starvation stresses.

作者信息

Cardoso Thiago Bergamo, Pinto Renan Terassi, Paiva Luciano Vilela

机构信息

Chemistry Department, Federal University of Lavras - UFLA, Lavras, Minas Gerais Brazil.

出版信息

3 Biotech. 2020 Dec;10(12):525. doi: 10.1007/s13205-020-02528-3. Epub 2020 Nov 11.

Abstract

Aluminium (Al) toxicity and phosphate deficit on soils are some of the main problems of modern agriculture and are usually associated. Some plants are able to overcome these stresses through exuding organic acids on the rhizosphere, such as citrate and malate, which are exported by MATE (Multi drug and toxin extrusion) and ALMT (Aluminium-activated malate transporter) transporters, respectively. Despite its co-action on acidic soils, few studies explore these two families' correlation, especially on tree crops, therefore we performed a comprehensive description of MATE and ALMT families on as a model species for arboreal plants. We found 20 and 56 putative members of ALMT and MATE families, respectively. Then, a gene co-expression network analysis was performed using broad transcriptomic data to analyze which members of each family were transcriptionally associated. Four independent networks were generated, one of which is composed of members putatively related to phosphate starvation and aluminum toxicity stresses. The PoptrALMT10 and PoptrMATE54 genes were selected from this network for a deeper analysis, which revealed that in roots under phosphate starvation stress the two genes have independent transcriptional profiles, however, on the aluminum toxicity stress they share some common correlations with other genes. The data presented here help on the description of these gene families, of which some members are potentially involved in plant responses to acid soil-related stresses and its exploration is an important step towards using this knowledge on breeding programs for and other tree crops.

摘要

土壤中的铝(Al)毒性和磷缺乏是现代农业的一些主要问题,且通常相互关联。一些植物能够通过在根际分泌有机酸来克服这些胁迫,例如分别由多药和毒素外排(MATE)转运蛋白和铝激活苹果酸转运蛋白(ALMT)转运的柠檬酸和苹果酸。尽管它们在酸性土壤中有协同作用,但很少有研究探讨这两个家族的相关性,尤其是在木本作物上,因此我们以一种木本植物的模式物种为对象,对MATE和ALMT家族进行了全面描述。我们分别发现了ALMT家族和MATE家族的20个和56个推定成员。然后,利用广泛的转录组数据进行基因共表达网络分析,以分析每个家族的哪些成员在转录水平上相关。生成了四个独立的网络,其中一个由推定与磷饥饿和铝毒性胁迫相关的成员组成。从这个网络中选择了毛果杨ALMT10(PoptrALMT10)和毛果杨MATE54(PoptrMATE54)基因进行深入分析,结果表明,在磷饥饿胁迫下的根中,这两个基因具有独立的转录谱,然而,在铝毒性胁迫下,它们与其他基因有一些共同的相关性。本文提供的数据有助于对这些基因家族进行描述,其中一些成员可能参与植物对酸性土壤相关胁迫的反应,对其进行探索是将这些知识应用于毛果杨和其他木本作物育种计划的重要一步。

相似文献

2
Genome-wide identification of MATE and ALMT genes and their expression profiling in mungbean (Vigna radiata L.) under aluminium stress.
Ecotoxicol Environ Saf. 2024 Jul 15;280:116558. doi: 10.1016/j.ecoenv.2024.116558. Epub 2024 Jun 8.
3
Aluminum toxicity and aluminum stress-induced physiological tolerance responses in higher plants.
Crit Rev Biotechnol. 2021 Aug;41(5):715-730. doi: 10.1080/07388551.2021.1874282. Epub 2021 Apr 18.
4
Analysis of gene co-expression networks of phosphate starvation and aluminium toxicity responses in Populus spp.
PLoS One. 2019 Oct 10;14(10):e0223217. doi: 10.1371/journal.pone.0223217. eCollection 2019.
5
Genome-Wide Analysis, Evolutionary History and Response of Family to Phosphate Starvation in .
Int J Mol Sci. 2021 Apr 28;22(9):4625. doi: 10.3390/ijms22094625.
6
Aluminum phytotoxicity in acidic environments: A comprehensive review of plant tolerance and adaptation strategies.
Ecotoxicol Environ Saf. 2024 Jan 1;269:115791. doi: 10.1016/j.ecoenv.2023.115791. Epub 2023 Dec 8.
7
Mechanisms of organic acids and boron induced tolerance of aluminum toxicity: A review.
Ecotoxicol Environ Saf. 2018 Dec 15;165:25-35. doi: 10.1016/j.ecoenv.2018.08.087. Epub 2018 Aug 31.
9
Recent Updates on ALMT Transporters' Physiology, Regulation, and Molecular Evolution in Plants.
Plants (Basel). 2023 Sep 4;12(17):3167. doi: 10.3390/plants12173167.

引用本文的文献

1
Phosphorus uptake, transport, and signaling in woody and model plants.
For Res (Fayettev). 2024 May 6;4:e017. doi: 10.48130/forres-0024-0014. eCollection 2024.
2
Silicon mediated heavy metal stress amelioration in fruit crops.
Heliyon. 2024 Sep 4;10(18):e37425. doi: 10.1016/j.heliyon.2024.e37425. eCollection 2024 Sep 30.
3
Aluminum in plant: Benefits, toxicity and tolerance mechanisms.
Front Plant Sci. 2023 Jan 13;13:1085998. doi: 10.3389/fpls.2022.1085998. eCollection 2022.
5
Aluminum stress signaling, response, and adaptive mechanisms in plants.
Plant Signal Behav. 2022 Dec 31;17(1):2057060. doi: 10.1080/15592324.2022.2057060.

本文引用的文献

1
Characterisation of HvALMT1 function in transgenic barley plants.
Funct Plant Biol. 2011 Feb;38(2):163-175. doi: 10.1071/FP10140.
2
SynMap2 and SynMap3D: web-based whole-genome synteny browsers.
Bioinformatics. 2017 Jul 15;33(14):2197-2198. doi: 10.1093/bioinformatics/btx144.
3
A multidrug and toxic compound extrusion transporter mediates berberine accumulation into vacuoles in Coptis japonica.
Phytochemistry. 2017 Jun;138:76-82. doi: 10.1016/j.phytochem.2017.03.003. Epub 2017 Mar 18.
4
Two tonoplast MATE proteins function as turgor-regulating chloride channels in .
Proc Natl Acad Sci U S A. 2017 Mar 7;114(10):E2036-E2045. doi: 10.1073/pnas.1616203114. Epub 2017 Feb 15.
5
PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants.
Nucleic Acids Res. 2017 Jan 4;45(D1):D1040-D1045. doi: 10.1093/nar/gkw982. Epub 2016 Oct 24.
6
CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.
Nucleic Acids Res. 2017 Jan 4;45(D1):D200-D203. doi: 10.1093/nar/gkw1129. Epub 2016 Nov 29.
7
MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets.
Mol Biol Evol. 2016 Jul;33(7):1870-4. doi: 10.1093/molbev/msw054. Epub 2016 Mar 22.
9
The Plant Genome Integrative Explorer Resource: PlantGenIE.org.
New Phytol. 2015 Dec;208(4):1149-56. doi: 10.1111/nph.13557. Epub 2015 Jul 20.
10
Plant Adaptation to Acid Soils: The Molecular Basis for Crop Aluminum Resistance.
Annu Rev Plant Biol. 2015;66:571-98. doi: 10.1146/annurev-arplant-043014-114822. Epub 2015 Jan 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验