Suppr超能文献

未来展望:基于时间分辨传感器数据的物质职业暴露建模

Future Prospects of Occupational Exposure Modelling of Substances in the Context of Time-Resolved Sensor Data.

机构信息

Netherlands Organisation for Applied Scientific Research (TNO), Risk Assessment for Products in Development (RAPID), Princetonlaan, CB Utrecht, The Netherlands.

Netherlands Organisation for Applied Scientific Research (TNO), Environmental Modelling, Sensing & Analysis (EMSA), Princetonlaan, CB Utrecht, The Netherlands.

出版信息

Ann Work Expo Health. 2021 Apr 22;65(3):246-254. doi: 10.1093/annweh/wxaa102.

Abstract

This commentary explores the use of high-resolution data from new, miniature sensors to enrich models that predict exposures to chemical substances in the workplace. To optimally apply these sensors, one can expect an increased need for new models that will facilitate the interpretation and extrapolation of the acquired time-resolved data. We identified three key modelling approaches in the context of sensor data, namely (i) enrichment of existing time-integrated exposure models, (ii) (new) high-resolution (in time and space) empirical models, and (iii) new 'occupational dispersion' models. Each approach was evaluated in terms of their application in research, practice, and for policy purposes. It is expected that substance-specific sensor data will have the potential to transform workplace modelling by re-calibrating, refining, and validating existing (time-integrated) models. An increased shift towards 'sensor-driven' models is expected. It will allow for high-resolution modelling in time and space to identify peak exposures and will be beneficial for more individualized exposure assessment and real-time risk management. New 'occupational dispersion models' such as interpolation, computational fluid dynamic models, and assimilation techniques, together with sensor data, will be specifically useful. These techniques can be applied to develop site-specific concentration maps which calculate personal exposures and mitigate worker exposure through early warning systems, source finding and improved control design and control strategies. Critical development and investment needs for sensor data linked to (new) model development were identified such as (i) the generation of more sensor data with reliable sensor technologies (achieved by improved specificity, sensitivity, and accuracy of sensors), (ii) investing in statistical and new model developments, (iii) ensuring that we comply with privacy and security issues of concern, and (iv) acceptance by relevant target groups (such as employers and employees) and stimulation of these new technologies by policymakers and technology developers.

摘要

本述评探讨了利用新的微型传感器提供的高分辨率数据来丰富预测工作场所化学物质暴露的模型。为了最佳地应用这些传感器,可以预期对新模型的需求将会增加,这些新模型将有助于解释和推断所获得的时间分辨数据。我们在传感器数据的背景下确定了三种关键建模方法,即(i) 丰富现有的时间积分暴露模型,(ii)(新的)高分辨率(时间和空间)经验模型,以及 (iii) 新的“职业分散”模型。每种方法都从研究、实践和政策目的的角度进行了评估。预计特定物质的传感器数据有可能通过重新校准、改进和验证现有的(时间积分)模型来改变工作场所的建模。预计会更多地转向“传感器驱动”的模型。它将允许在时间和空间上进行高分辨率建模,以识别峰值暴露,并将有利于更个体化的暴露评估和实时风险管理。新的“职业分散模型”,如插值、计算流体动力学模型和同化技术,以及传感器数据,将特别有用。这些技术可用于开发特定地点的浓度图,计算个人暴露,并通过早期预警系统、污染源查找和改进控制设计和控制策略来减轻工人的暴露。确定了与(新)模型开发相关的传感器数据的关键发展和投资需求,例如(i) 使用可靠的传感器技术生成更多的传感器数据(通过提高传感器的特异性、灵敏度和准确性来实现),(ii) 投资于统计和新模型的发展,(iii) 确保我们遵守隐私和安全问题,以及 (iv) 得到相关目标群体(如雇主和员工)的认可,并由政策制定者和技术开发者刺激这些新技术的发展。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验