Suppr超能文献

使用蒙特卡罗树搜索加速共聚物反向设计。

Accelerating copolymer inverse design using monte carlo tree search.

机构信息

Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India.

出版信息

Nanoscale. 2020 Dec 8;12(46):23653-23662. doi: 10.1039/d0nr06091g.

Abstract

There exists a broad class of sequencing problems in soft materials such as proteins and polymers that can be formulated as a heuristic search that involves decision making akin to a computer game. AI gaming algorithms such as Monte Carlo tree search (MCTS) gained prominence after their exemplary performance in the computer Go game and are decision trees aimed at identifying the path (moves) that should be taken by the policy to reach the final winning or optimal solution. Major challenges in inverse sequencing problems are that the materials search space is extremely vast and property evaluation for each sequence is computationally demanding. Reaching an optimal solution by minimizing the total number of evaluations in a given design cycle is therefore highly desirable. We demonstrate that one can adopt this approach for solving the sequencing problem by developing and growing a decision tree, where each node in the tree is a candidate sequence whose fitness is directly evaluated by molecular simulations. We interface MCTS with MD simulations and use a representative example of designing a copolymer compatibilizer, where the goal is to identify sequence specific copolymers that lead to zero interfacial energy between two immiscible homopolymers. We apply the MCTS algorithm to polymer chain lengths varying from 10-mer to 30-mer, wherein the overall search space varies from 210 (1024) to 230 (∼1 billion). In each case, we identify a target sequence that leads to zero interfacial energy within a few hundred evaluations demonstrating the scalability and efficiency of MCTS in exploring practical materials design problems with exceedingly vast chemical/material search space. Our MCTS-MD framework can be easily extended to several other polymer and protein inverse design problems, in particular, for cases where sequence-property data is either unavailable and/or is resource intensive.

摘要

存在广泛的软物质(如蛋白质和聚合物)测序问题,可以将其表述为启发式搜索,其中涉及类似于计算机游戏的决策制定。人工智能游戏算法(如蒙特卡罗树搜索(MCTS))在计算机围棋游戏中表现出色后变得引人注目,它们是决策树,旨在确定策略应采取的路径(移动)以达到最终的获胜或最佳解决方案。逆序问题的主要挑战在于材料搜索空间极其广阔,并且每个序列的属性评估计算量很大。因此,通过在给定设计周期中最小化评估总数来达到最佳解决方案是非常可取的。我们通过开发和扩展决策树来证明可以采用这种方法来解决测序问题,其中树中的每个节点都是候选序列,其适应性直接通过分子模拟进行评估。我们将 MCTS 与 MD 模拟相结合,并使用设计共聚物增容剂的代表性示例,目标是识别导致两种不混溶均聚物之间界面能为零的序列特异性共聚物。我们将 MCTS 算法应用于从 10 -mer 到 30-mer 的聚合物链长度,其中总体搜索空间从 210(1024)到 230(约 10 亿)不等。在每种情况下,我们都确定了一个目标序列,该序列在几百次评估内导致零界面能,证明了 MCTS 在探索具有极大化学/材料搜索空间的实际材料设计问题时的可扩展性和效率。我们的 MCTS-MD 框架可以很容易地扩展到其他几个聚合物和蛋白质反向设计问题,特别是在序列-属性数据不可用和/或资源密集的情况下。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验