Suppr超能文献

星型嵌段共聚物的加速序列设计:一种通过分子动力学模拟与机器学习融合的无偏探索策略

Accelerated Sequence Design of Star Block Copolymers: An Unbiased Exploration Strategy via Fusion of Molecular Dynamics Simulations and Machine Learning.

作者信息

Carrillo Jan-Michael Y, Parambil Vijith, Patra Tarak K, Chen Zhan, Russell Thomas P, Sankaranarayanan Subramanian K R S, Sumpter Bobby G, Batra Rohit

机构信息

Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.

Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600036, India.

出版信息

J Phys Chem B. 2024 May 2;128(17):4220-4230. doi: 10.1021/acs.jpcb.3c08110. Epub 2024 Apr 22.

Abstract

Star block copolymers (s-BCPs) have potential applications as novel surfactants or amphiphiles for emulsification, compatibilization, chemical transformations, and separations. s-BCPs have chain architectures where three or more linear diblock copolymer arms comprised of two chemically distinct linear polymers, e.g., solvophobic and solvophilic chains, are covalently joined at one point. The chemical composition of each of the subunit polymer chains comprising the arms, their molecular weights, and the number of arms can be varied to tailor the surface and interfacial activity of these architecturally unique molecules. This makes identification of the optimal s-BCP design nontrivial as the total number of plausible s-BCP architectures is experimentally or computationally intractable. In this work, we use molecular dynamics (MD) simulations coupled with a reinforcement learning-based Monte Carlo tree search (MCTS) to identify s-BCP designs that minimize the interfacial tension between polar and nonpolar solvents. We first validate the MCTS approach for the design of small- and medium-sized s-BCPs and then use it to efficiently identify sequences of copolymer blocks for large-sized s-BCPs. The structural origins of interfacial tension in these systems are also identified by using the configurations obtained from MD simulations. Chemical insights into the arrangement of copolymer blocks that promote lower interfacial tension were mined using machine learning (ML) techniques. Overall, this work provides an efficient approach to solve design problems via fusion of simulations and ML and provides important groundwork for future experimental investigation of s-BCPs for various applications.

摘要

星形嵌段共聚物(s-BCPs)作为新型表面活性剂或两亲物在乳化、增容、化学转化和分离方面具有潜在应用。s-BCPs具有链结构,其中由两种化学性质不同的线性聚合物(例如疏溶剂链和亲溶剂链)组成的三个或更多线性二嵌段共聚物臂在某一点共价连接。组成臂的每个亚基聚合物链的化学组成、它们的分子量以及臂的数量可以变化,以调整这些结构独特分子的表面和界面活性。由于合理的s-BCP结构总数在实验上或计算上难以处理,因此确定最佳的s-BCP设计并非易事。在这项工作中,我们使用分子动力学(MD)模拟结合基于强化学习的蒙特卡罗树搜索(MCTS)来识别能够最小化极性和非极性溶剂之间界面张力的s-BCP设计。我们首先验证了MCTS方法用于设计中小型s-BCPs,然后使用它来有效地识别大型s-BCPs的共聚物嵌段序列。还通过使用从MD模拟获得的构型来确定这些系统中界面张力的结构起源。使用机器学习(ML)技术挖掘了对促进较低界面张力的共聚物嵌段排列的化学见解。总体而言,这项工作通过融合模拟和ML提供了一种解决设计问题的有效方法,并为未来s-BCPs在各种应用中的实验研究提供了重要基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验