He Feng, Jiang Yu-Zhu, Lin Hai-Qing, Hulet Randall G, Pu Han, Guan Xi-Wen
State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, APM, Chinese Academy of Sciences, Wuhan 430071, China.
University of Chinese Academy of Sciences, Beijing 100049, China.
Phys Rev Lett. 2020 Nov 6;125(19):190401. doi: 10.1103/PhysRevLett.125.190401.
At low temperature, collective excitations of one-dimensional (1D) interacting fermions exhibit spin-charge separation, a unique feature predicted by the Tomonaga-Luttinger liquid (TLL) theory, but a rigorous understanding remains challenging. Using the thermodynamic Bethe ansatz (TBA) formalism, we analytically derive universal properties of a 1D repulsive spin-1/2 Fermi gas with arbitrary interaction strength. We show how spin-charge separation emerges from the exact TBA formalism, and how it is disrupted by the interplay between the two degrees of freedom that brings us beyond the TLL paradigm. Based on the exact low-lying excitation spectra, we further evaluate the spin and charge dynamical structure factors (DSFs). The peaks of the DSFs exhibit distinguishable propagating velocities of spin and charge as functions of interaction strength, which can be observed by Bragg spectroscopy with ultracold atoms.
在低温下,一维(1D)相互作用费米子的集体激发表现出自旋-电荷分离,这是汤川-卢廷格液体(TLL)理论预测的一个独特特征,但要进行严格理解仍具有挑战性。利用热力学贝塞耳 ansatz(TBA)形式,我们解析地推导了具有任意相互作用强度的一维排斥性自旋-1/2费米气体的普适性质。我们展示了自旋-电荷分离如何从精确的TBA形式中出现,以及它如何被两个自由度之间的相互作用所破坏,这使我们超越了TLL范式。基于精确的低能激发谱,我们进一步评估了自旋和电荷动力学结构因子(DSFs)。DSFs的峰值表现出自旋和电荷作为相互作用强度函数的可区分的传播速度,这可以通过超冷原子的布拉格光谱观测到。