Department of Physics and Astronomy, Rice University, Houston, TX 77005, USA.
State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, APM, Chinese Academy of Sciences, Wuhan 430071, China.
Science. 2022 Jun 17;376(6599):1305-1308. doi: 10.1126/science.abn1719. Epub 2022 Jun 16.
Ultracold atoms confined to periodic potentials have proven to be a powerful tool for quantum simulation of complex many-body systems. We confine fermions to one dimension to realize the Tomonaga-Luttinger liquid model, which describes the highly collective nature of their low-energy excitations. We use Bragg spectroscopy to directly excite either the spin or charge waves for various strengths of repulsive interaction. We observe that the velocity of the spin and charge excitations shift in opposite directions with increasing interaction, a hallmark of spin-charge separation. The excitation spectra are in quantitative agreement with the exact solution of the Yang-Gaudin model and the Tomonaga-Luttinger liquid theory. Furthermore, we identify effects of nonlinear corrections to this theory that arise from band curvature and back-scattering.
将冷原子限制在周期性势中已被证明是模拟复杂多体系统的强大工具。我们将费米子限制在一维空间中,以实现汤姆松-拉提尔液体模型,该模型描述了它们低能激发的高度集体性质。我们使用布拉格光谱术直接激发自旋或电荷波,以实现各种强度的排斥相互作用。我们观察到,随着相互作用的增加,自旋和电荷激发的速度朝着相反的方向移动,这是自旋电荷分离的标志。激发谱与杨-高丁模型和汤姆孙-拉提尔液体理论的精确解定量一致。此外,我们还确定了由能带曲率和背散射引起的对该理论的非线性修正的影响。