Suppr超能文献

鉴定人类微生物组中的天然 CRISPR 系统和靶标。

Identification of Natural CRISPR Systems and Targets in the Human Microbiome.

机构信息

Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115, USA; Department for Computational Biology of Infection Research, Helmholtz Center for Infection Research, 38124 Braunschweig, Germany; Max von Pettenkofer-Institute for Hygiene and Clinical Microbiology, Ludwig-Maximilian University of Munich, 80336 Munich, Germany.

Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.

出版信息

Cell Host Microbe. 2021 Jan 13;29(1):94-106.e4. doi: 10.1016/j.chom.2020.10.010. Epub 2020 Nov 19.

Abstract

Many bacteria resist invasive DNA by incorporating sequences into CRISPR loci, which enable sequence-specific degradation. CRISPR systems have been well studied from isolate genomes, but culture-independent metagenomics provide a new window into their diversity. We profiled CRISPR loci and cas genes in the body-wide human microbiome using 2,355 metagenomes, yielding functional and taxonomic profiles for 2.9 million spacers by aligning the spacer content to each sample's metagenome and corresponding gene families. Spacer and repeat profiles agree qualitatively with those from isolate genomes but expand their diversity by approximately 13-fold, with the highest spacer load present in the oral microbiome. The taxonomy of spacer sequences parallels that of their source community, with functional targets enriched for viral elements. When coupled with cas gene systems, CRISPR-Cas subtypes are highly site and taxon specific. Our analysis provides a comprehensive collection of natural CRISPR-cas loci and targets in the human microbiome.

摘要

许多细菌通过将序列整合到 CRISPR 基因座中来抵抗入侵的 DNA,从而实现序列特异性降解。CRISPR 系统已经从分离基因组中得到了很好的研究,但非培养的宏基因组学为它们的多样性提供了一个新的视角。我们使用 2355 个宏基因组对人体微生物组的全身 CRISPR 基因座和 cas 基因进行了分析,通过将间隔物内容与每个样本的宏基因组和相应的基因家族进行比对,为 290 万个间隔物生成了功能和分类学特征。间隔物和重复序列的特征与从分离基因组中获得的特征基本一致,但它们的多样性扩展了约 13 倍,口腔微生物组中的间隔物负荷最高。间隔序列的分类与它们的来源群落的分类一致,功能靶标富集了病毒元件。当与 cas 基因系统结合使用时,CRISPR-Cas 亚型在靶位和分类上具有高度特异性。我们的分析提供了人类微生物组中天然 CRISPR-cas 基因座和靶标的综合集合。

相似文献

1
Identification of Natural CRISPR Systems and Targets in the Human Microbiome.鉴定人类微生物组中的天然 CRISPR 系统和靶标。
Cell Host Microbe. 2021 Jan 13;29(1):94-106.e4. doi: 10.1016/j.chom.2020.10.010. Epub 2020 Nov 19.
2
Expanding the catalog of cas genes with metagenomes.利用宏基因组拓展 cas 基因目录。
Nucleic Acids Res. 2014 Feb;42(4):2448-59. doi: 10.1093/nar/gkt1262. Epub 2013 Dec 6.
8
Diverse CRISPRs evolving in human microbiomes.人类微生物组中多样化的 CRISPR 系统。
PLoS Genet. 2012;8(6):e1002441. doi: 10.1371/journal.pgen.1002441. Epub 2012 Jun 13.

引用本文的文献

5
The Respiratory Tract Microbiome and Human Health.呼吸道微生物群与人类健康
Microb Biotechnol. 2025 May;18(5):e70147. doi: 10.1111/1751-7915.70147.
8
The oral microbiome: diversity, biogeography and human health.口腔微生物组:多样性、生物地理学与人类健康。
Nat Rev Microbiol. 2024 Feb;22(2):89-104. doi: 10.1038/s41579-023-00963-6. Epub 2023 Sep 12.

本文引用的文献

1
CRISPR-Cas Systems and the Paradox of Self-Targeting Spacers.CRISPR-Cas系统与自我靶向间隔序列的悖论
Front Microbiol. 2020 Jan 22;10:3078. doi: 10.3389/fmicb.2019.03078. eCollection 2019.
6
Species-level functional profiling of metagenomes and metatranscriptomes.宏基因组和宏转录组的物种水平功能分析。
Nat Methods. 2018 Nov;15(11):962-968. doi: 10.1038/s41592-018-0176-y. Epub 2018 Oct 30.
8
CRISPR still needs microbiologists.CRISPR技术仍然需要微生物学家。
Nat Microbiol. 2018 Jun;3(6):641. doi: 10.1038/s41564-018-0175-x.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验