Suppr超能文献

基于 DeepWalk 和网络一致性投影的 circRNA 疾病关联预测。

Potential circRNA-disease association prediction using DeepWalk and network consistency projection.

机构信息

School of Information Engineering, East China Jiaotong University, Nanchang, China.

College of Computer Science and Electronic Engineering, Hunan University, Changsha, China.

出版信息

J Biomed Inform. 2020 Dec;112:103624. doi: 10.1016/j.jbi.2020.103624. Epub 2020 Nov 18.

Abstract

A growing body of experimental studies have reported that circular RNAs (circRNAs) are of interest in pathogenicity mechanism research and are becoming new diagnostic biomarkers. As experimental techniques for identifying disease-circRNA interactions are costly and laborious, some computational predictors have been advanced on the basis of the integration of biological features about circRNAs and diseases. However, the existing circRNA-disease relationships are not well exploited. To solve this issue, a novel method named DeepWalk and network consistency projection for circRNA-disease association prediction (DWNCPCDA) is proposed. Specifically, our method first reveals features of nodes learned by the deep learning method DeepWalk based on known circRNA-disease associations to calculate circRNA-circRNA similarity and disease-disease similarity, and then these two similarity networks are further employed to feed to the network consistency projection method to predict unobserved circRNA-disease interactions. As a result, DWNCPCDA shows high-accuracy performances for disease-circRNA interaction prediction: an AUC of 0.9647 with leave-one-out cross validation and an average AUC of 0.9599 with five-fold cross validation. We further perform case studies to prioritize latent circRNAs related to complex human diseases. Overall, this proposed method is able to provide a promising solution for disease-circRNA interaction prediction, and is capable of enhancing existing similarity-based prediction methods.

摘要

越来越多的实验研究表明,环状 RNA(circRNAs)在致病机制研究中很有意义,并且正在成为新的诊断生物标志物。由于鉴定疾病相关 circRNA 的实验技术既昂贵又费力,因此一些基于 circRNA 和疾病的生物学特征整合的计算预测器已经得到了发展。然而,现有的 circRNA-疾病关系并没有得到很好的利用。为了解决这个问题,提出了一种名为 DeepWalk 和网络一致性投影的用于 circRNA-疾病关联预测的新方法(DWNCPCDA)。具体来说,我们的方法首先揭示了基于已知 circRNA-疾病关联的深度学习方法 DeepWalk 学习的节点特征,以计算 circRNA-circRNA 相似性和疾病-疾病相似性,然后将这两个相似性网络进一步用于网络一致性投影方法,以预测未观察到的 circRNA-疾病相互作用。结果表明,DWNCPCDA 对疾病 circRNA 相互作用预测具有高精度性能:留一交叉验证的 AUC 为 0.9647,五折交叉验证的平均 AUC 为 0.9599。我们进一步进行案例研究,以优先考虑与复杂人类疾病相关的潜在 circRNAs。总的来说,该方法为疾病 circRNA 相互作用预测提供了一种有前途的解决方案,并能够增强现有的基于相似性的预测方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验