Suppr超能文献

基于深度游走和非负矩阵分解的潜在环状RNA-疾病关联预测

Potential circRNA-Disease Association Prediction Using DeepWalk and Nonnegative Matrix Factorization.

作者信息

Qiao Li-Juan, Gao Zhen, Ji Cun-Mei, Liu Zhi-Hao, Zheng Chun-Hou, Wang Yu-Tian

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2023 Sep-Oct;20(5):3154-3162. doi: 10.1109/TCBB.2023.3264466. Epub 2023 Oct 9.

Abstract

Circular RNAs (circRNAs) are a category of noncoding RNAs that exist in great numbers in eukaryotes. They have recently been discovered to be crucial in the growth of tumors. Therefore, it is important to explore the association of circRNAs with disease. This paper proposes a new method based on DeepWalk and nonnegative matrix factorization (DWNMF) to predict circRNA-disease association. Based on the known circRNA-disease association, we calculate the topological similarity of circRNA and disease via the DeepWalk-based method to learn the node features on the association network. Next, the functional similarity of the circRNAs and the semantic similarity of the diseases are fused with their respective topological similarities at different scales. Then, we use the improved weighted K-nearest neighbor (IWKNN) method to preprocess the circRNA-disease association network and correct nonnegative associations by setting different parameters K and K in the circRNA and disease matrices. Finally, the L-norm, dual-graph regularization term and Frobenius norm regularization term are introduced into the nonnegative matrix factorization model to predict the circRNA-disease correlation. We perform cross-validation on circR2Disease, circRNADisease, and MNDR. The numerical results show that DWNMF is an efficient tool for forecasting potential circRNA-disease relationships, outperforming other state-of-the-art approaches in terms of predictive performance.

摘要

环状RNA(circRNAs)是一类在真核生物中大量存在的非编码RNA。最近人们发现它们在肿瘤生长中起着关键作用。因此,探索circRNAs与疾病的关联具有重要意义。本文提出了一种基于深度游走(DeepWalk)和非负矩阵分解(DWNMF)的新方法来预测circRNA-疾病关联。基于已知的circRNA-疾病关联,我们通过基于深度游走的方法计算circRNA和疾病的拓扑相似性,以学习关联网络上的节点特征。接下来,将circRNAs的功能相似性和疾病的语义相似性在不同尺度上与其各自的拓扑相似性进行融合。然后,我们使用改进的加权K近邻(IWKNN)方法对circRNA-疾病关联网络进行预处理,并通过在circRNA和疾病矩阵中设置不同的参数K和K来校正非负关联。最后,将L范数、双图正则化项和弗罗贝尼乌斯范数正则化项引入非负矩阵分解模型中,以预测circRNA-疾病相关性。我们在circR2Disease、circRNADisease和MNDR上进行了交叉验证。数值结果表明,DWNMF是预测潜在circRNA-疾病关系的有效工具,在预测性能方面优于其他现有方法。

相似文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验