Liu Yongshan, Bai Zhongyang, Xu Yong, Wu Xiaojun, Sun Yun, Li Helin, Sun Tong, Kong RuRu, Pandey Chandan, Kraft Michael, Song Qinglin, Zhao Weisheng, Nie Tianxiao, Wen Lianggong
School of Microelectronics, Beihang University, Beijing, 100191, People's Republic of China.
Beihang-Goertek Joint Microelectronics Institute, Qingdao Research Institute, Beihang University, Qingdao, 266000, People's Republic of China.
Nanotechnology. 2021 Mar 5;32(10):105201. doi: 10.1088/1361-6528/abcc98.
Recently emerging spintronic terahertz (THz) emitters, featuring many appreciable merits such as low-cost, high efficiency, ultrabroadband, and ease of integration, offer multifaceted capabilities not only in understanding the fundamental ultrafast magnetism physics but also for exploring multifarious practical applications. Integration of various flexible and tunable functions at the source such as polarization manipulation, amplitude tailoring, phase modulation, and radiation beam steering with the spintronic THz emitters and their derivatives can yield more compact and elegant devices. Here, we demonstrate a monolithic metamaterial integrated onto a W/CoFeB/Pt THz nanoemitter for a purpose-designed functionality of the electromagnetically induced transparency analog. Through elaborate engineering the asymmetry degree and geometric parameters of the metamaterial structure, we successfully verified the feasibility of monolithic modulations for the radiated THz waves. The integrated device was eventually compared with a set of stand-alone metamaterial positioning scenarios, and the negligible frequency difference between two of the positioning schemes further manifests almost an ideal realization of the proposed monolithic integrated metamaterial device with a spintronic THz emitter. We believe that such adaptable and scalable devices may make valuable contributions to the designable spintronic THz devices with pre-shaping THz waves and enable chip-scale spintronic THz optics, sensing, and imaging.
最近出现的自旋电子太赫兹(THz)发射器具有许多可观的优点,如低成本、高效率、超宽带以及易于集成,不仅在理解超快磁学基本物理方面具有多方面的能力,而且在探索各种实际应用中也具有多方面的能力。将各种灵活且可调节的功能集成到源头上,如利用自旋电子太赫兹发射器及其衍生物进行偏振操纵、幅度调整、相位调制和辐射束转向,能够产生更紧凑、更精致的器件。在此,我们展示了一种集成在W/CoFeB/Pt太赫兹纳米发射器上的单片超材料,用于实现电磁诱导透明模拟的特定功能。通过精心设计超材料结构的不对称度和几何参数,我们成功验证了对辐射太赫兹波进行单片调制的可行性。最终将该集成器件与一组独立的超材料定位方案进行了比较,两种定位方案之间可忽略不计的频率差异进一步表明,所提出的带有自旋电子太赫兹发射器的单片集成超材料器件几乎得到了理想的实现。我们相信,这种适应性强且可扩展的器件可能会对具有预整形太赫兹波的可设计自旋电子太赫兹器件做出有价值的贡献,并实现芯片级自旋电子太赫兹光学、传感和成像。