Suppr超能文献

单个非对称开口环太赫兹谐振器的近场光谱学

Near-Field Spectroscopy of Individual Asymmetric Split-Ring Terahertz Resonators.

作者信息

Lu Yuezhen, Hale Lucy L, Zaman Abdullah M, Addamane Sadhvikas J, Brener Igal, Mitrofanov Oleg, Degl'Innocenti Riccardo

机构信息

School of Engineering, New Engineering Building, Lancaster University, Gillow Ave, Bailrigg, Lancaster LA1 4YW, U.K.

Electronic and Electrical Engineering, University College London, London WC1E 7JE, U.K.

出版信息

ACS Photonics. 2023 Aug 3;10(8):2832-2838. doi: 10.1021/acsphotonics.3c00527. eCollection 2023 Aug 16.

Abstract

Metamaterial resonators have become an efficient and versatile platform in the terahertz frequency range, finding applications in integrated optical devices, such as active modulators and detectors, and in fundamental research, e.g., ultrastrong light-matter investigations. Despite their growing use, characterization of modes supported by these subwavelength elements has proven to be challenging and it still relies on indirect observation of the collective far-field transmission/reflection properties of resonator arrays. Here, we present a broadband time-domain spectroscopic investigation of individual metamaterial resonators via a THz aperture scanning near-field microscope (a-SNOM). The time-domain a-SNOM allows the mapping and quantitative analysis of strongly confined modes supported by the resonators. In particular, a cross-polarized configuration presented here allows an investigation of weakly radiative modes. These results hold great potential to advance future metamaterial-based optoelectronic platforms for fundamental research in THz photonics.

摘要

超材料谐振器已成为太赫兹频率范围内一种高效且通用的平台,在集成光学器件(如有源调制器和探测器)以及基础研究(例如超强光与物质相互作用研究)中均有应用。尽管其应用日益广泛,但对这些亚波长元件所支持模式的表征已被证明具有挑战性,目前仍依赖于对谐振器阵列集体远场透射/反射特性的间接观测。在此,我们通过太赫兹孔径扫描近场显微镜(a-SNOM)对单个超材料谐振器进行了宽带时域光谱研究。时域a-SNOM能够对谐振器所支持的强局域模式进行成像和定量分析。特别是,本文所呈现的交叉极化配置能够对弱辐射模式进行研究。这些结果对于推动未来基于超材料的光电子平台在太赫兹光子学基础研究方面具有巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3737/10436345/0f2034bceb0d/ph3c00527_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验