Suppr超能文献

温针治疗肩周炎的疗效与安全性:一项系统评价与Meta分析方案

Efficacy and safety of warm needle treatment for scapulohumeral periarthritis: A protocol for systematic review and meta-analysis.

作者信息

Wang Xiaoyu, Hai Xinghua, Jiang Dongli, Yin Lianjun, Li Huanan, Wang Qi, Liu Fang, Xu Guoqiang, Sun Qing

机构信息

First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin.

Acupuncture and Rehabilitation Clinical College, Guangzhou University of Chinese Medicine.

出版信息

Medicine (Baltimore). 2020 Nov 20;99(47):e23237. doi: 10.1097/MD.0000000000023237.

Abstract

BACKGROUND

To evaluate the effectiveness and safety of warm needle acupuncture (WNA) treatment for Scapulohumeral periarthritis.

METHODS

Relevant randomized controlled trials will be searched from the databases of Pubmed, the Cochrane Library, Embase, CNKI, Wanfang Database, CBM and VIP Database from their inception to September 2021. The primary outcomes are effective rate, visual analog scale score. The secondary outcomes are Constant-Murley score, Japanese Orthopaedic Association scores, adverse events. Two reviewers will independently select studies, collect data, and assess the methodology quality by the Cochrane risk of bias tool. The Stata 14.0 will be used for meta-analysis.

RESULTS

This study is ongoing and will be submitted to a peer-reviewed journal for publication.

CONCLUSION

This study will provide an assessment of the current state of WNA for the scapulohumeral periarthritis, aiming to show the efficacy and safety of WNA treatment.

ETHICS AND DISSEMINATION

There is no requirement of ethical approval and informed consent, and it will be in print or published by electronic copies.

REGISTRATION

INPLASY2020100049.

摘要

背景

评估温针治疗肩周炎的有效性和安全性。

方法

从PubMed、Cochrane图书馆、Embase、中国知网、万方数据库、中国生物医学文献数据库和维普数据库中检索从建库至2021年9月的相关随机对照试验。主要结局指标为有效率、视觉模拟量表评分。次要结局指标为Constant-Murley评分、日本骨科学会评分、不良事件。两名评价员将独立选择研究、收集数据,并使用Cochrane偏倚风险工具评估方法学质量。采用Stata 14.0进行荟萃分析。

结果

本研究正在进行中,将提交给同行评审期刊发表。

结论

本研究将对温针治疗肩周炎的现状进行评估,旨在展示温针治疗的疗效和安全性。

伦理与传播

无需伦理批准和知情同意,将以印刷版或电子版形式发表。

注册信息

INPLASY2020100049

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7359/7676557/ead872098d15/medi-99-e23237-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验