Suppr超能文献

从社交媒体专家的噪音中筛选健康饮食信号:来自 Twitter 上健康饮食话语的初步证据。

Sorting the Healthy Diet Signal from the Social Media Expert Noise: Preliminary Evidence from the Healthy Diet Discourse on Twitter.

机构信息

Irish Institute of Digital Business, Dublin City University, Dublin, Ireland.

Centro de Informática, Universidade Federal de Pernambuco, Recife 52071-030, Brazil.

出版信息

Int J Environ Res Public Health. 2020 Nov 18;17(22):8557. doi: 10.3390/ijerph17228557.

Abstract

Over 2.8 million people die each year from being overweight or obese, a largely preventable disease. Social media has fundamentally changed the way we communicate, collaborate, consume, and create content. The ease with which content can be shared has resulted in a rapid increase in the number of individuals or organisations that seek to influence opinion and the volume of content that they generate. The nutrition and diet domain is not immune to this phenomenon. Unfortunately, from a public health perspective, many of these 'influencers' may be poorly qualified in order to provide nutritional or dietary guidance, and advice given may be without accepted scientific evidence and contrary to public health policy. In this preliminary study, we analyse the 'healthy diet' discourse on Twitter. While using a multi-component analytical approach, we analyse more than 1.2 million English language tweets over a 16-month period in order to identify and characterise the influential actors and discover topics of interest in the discourse. Our analysis suggests that the discourse is dominated by non-health professionals. There is widespread use of bots that pollute the discourse and seek to create a false equivalence on the efficacy of a particular nutritional strategy or diet. Topic modelling suggests a significant focus on diet, nutrition, exercise, weight, disease, and quality of life. Public health policy makers and professional nutritionists need to consider what interventions can be taken in order to counteract the influence of non-professional and bad actors on social media.

摘要

每年有超过 280 万人因超重或肥胖而死亡,这在很大程度上是可以预防的疾病。社交媒体从根本上改变了我们沟通、协作、消费和创作内容的方式。内容分享的便利性导致寻求影响意见和生成内容数量的个人或组织数量迅速增加。营养和饮食领域也不能幸免这种现象。不幸的是,从公共卫生的角度来看,这些“影响者”中的许多人可能没有资格提供营养或饮食指导,他们给出的建议可能没有被认可的科学证据,并且与公共卫生政策相悖。在这项初步研究中,我们分析了 Twitter 上的“健康饮食”话语。在使用多组件分析方法的同时,我们分析了超过 120 万条英语推文,以确定和描述有影响力的参与者,并发现话语中的感兴趣主题。我们的分析表明,该话语主要由非健康专业人员主导。广泛使用的机器人会污染话语,并试图在特定营养策略或饮食的功效上制造虚假的平衡。主题建模表明,人们非常关注饮食、营养、锻炼、体重、疾病和生活质量。公共卫生政策制定者和专业营养师需要考虑可以采取哪些干预措施来对抗社交媒体上非专业和不良行为者的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4525/7698912/3f08cb992e0f/ijerph-17-08557-g001.jpg

相似文献

3
Public Discourse Against Masks in the COVID-19 Era: Infodemiology Study of Twitter Data.
JMIR Public Health Surveill. 2021 Apr 5;7(4):e26780. doi: 10.2196/26780.
5
Characterizing Precision Nutrition Discourse on Twitter: Quantitative Content Analysis.
J Med Internet Res. 2023 Oct 12;25:e43701. doi: 10.2196/43701.
7
Does Scientific Publication Inform Public Discourse? A Case Study Observing Social Media Engagement Around Vaccinations.
Health Promot Pract. 2021 May;22(3):377-384. doi: 10.1177/1524839919899925. Epub 2020 Feb 1.
10
E-Cigarette Advocates on Twitter: Content Analysis of Vaping-Related Tweets.
JMIR Public Health Surveill. 2020 Oct 14;6(4):e17543. doi: 10.2196/17543.

引用本文的文献

3
Lifestyle-Related Factors for Improving Diet Quality.
Nutrients. 2025 Jan 26;17(3):448. doi: 10.3390/nu17030448.
5
Diet culture on TikTok: a descriptive content analysis.
Public Health Nutr. 2024 Sep 23;27(1):e169. doi: 10.1017/S1368980024001381.
8
Identifying methods used to manage weight and shape by first year university students: A qualitative analysis.
Eat Behav. 2024 Apr;53:101885. doi: 10.1016/j.eatbeh.2024.101885. Epub 2024 May 17.
9
Nutrition knowledge and health vulnerability of mothers of pre-school children in north-central, Nigeria.
PLoS One. 2024 Jan 31;19(1):e0292252. doi: 10.1371/journal.pone.0292252. eCollection 2024.
10
Nutrition and Food Literacy: Framing the Challenges to Health Communication.
Nutrients. 2023 Nov 7;15(22):4708. doi: 10.3390/nu15224708.

本文引用的文献

1
Contextual Word Embeddings and Topic Modeling in Healthy Dieting and Obesity.
J Healthc Inform Res. 2019 Jun 10;3(2):159-183. doi: 10.1007/s41666-019-00052-5. eCollection 2019 Jun.
2
From Fad to Fact: Evaluating the Impact of Emerging Diets on the Prevention of Cardiovascular Disease.
Am J Med. 2020 Oct;133(10):1126-1134. doi: 10.1016/j.amjmed.2020.05.017. Epub 2020 Jun 19.
3
E-healthy diet literacy scale and its relationship with behaviors and health outcomes in Taiwan.
Health Promot Int. 2021 Mar 12;36(1):20-33. doi: 10.1093/heapro/daaa033.
4
A Call for a Public Health Agenda for Social Media Research.
J Med Internet Res. 2019 Dec 19;21(12):e16661. doi: 10.2196/16661.
6
Food Trends and Popular Nutrition Advice Online - Implications for Public Health.
Online J Public Health Inform. 2018 Sep 21;10(2):e213. doi: 10.5210/ojphi.v10i2.9306. eCollection 2018.
7
Weaponized Health Communication: Twitter Bots and Russian Trolls Amplify the Vaccine Debate.
Am J Public Health. 2018 Oct;108(10):1378-1384. doi: 10.2105/AJPH.2018.304567. Epub 2018 Aug 23.
8
Could Social Bots Pose a Threat to Public Health?
Am J Public Health. 2018 Aug;108(8):1005-1006. doi: 10.2105/AJPH.2018.304512.
9
Drug information, misinformation, and disinformation on social media: a content analysis study.
J Public Health Policy. 2018 Aug;39(3):343-357. doi: 10.1057/s41271-018-0131-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验