文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

对确诊和疑似 COVID-19 患者的鼻咽拭子标本进行宏基因组下一代测序。

Metagenomic Next-Generation Sequencing of Nasopharyngeal Specimens Collected from Confirmed and Suspect COVID-19 Patients.

机构信息

Division of Medical Microbiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.

CosmosID, Inc., Rockville, Maryland, USA.

出版信息

mBio. 2020 Nov 20;11(6):e01969-20. doi: 10.1128/mBio.01969-20.


DOI:10.1128/mBio.01969-20
PMID:33219095
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7686804/
Abstract

Metagenomic next-generation sequencing (mNGS) offers an agnostic approach for emerging pathogen detection directly from clinical specimens. In contrast to targeted methods, mNGS also provides valuable information on the composition of the microbiome and might uncover coinfections that may associate with disease progression and impact prognosis. To evaluate the use of mNGS for detecting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and/or other infecting pathogens, we applied direct Oxford Nanopore long-read third-generation metatranscriptomic and metagenomic sequencing. Nasopharyngeal (NP) swab specimens from 50 patients under investigation for CoV disease 2019 (COVID-19) were sequenced, and the data were analyzed by the CosmosID bioinformatics platform. Further, we characterized coinfections and the microbiome associated with a four-point severity index. SARS-CoV-2 was identified in 77.5% (31/40) of samples positive by RT-PCR, correlating with lower cycle threshold (Ct) values and fewer days from symptom onset. At the time of sampling, possible bacterial or viral coinfections were detected in 12.5% of SARS-CoV-2-positive specimens. A decrease in microbial diversity was observed among COVID-19-confirmed patients (Shannon diversity index,  = 0.0082; Chao richness estimate,  = 0.0097; Simpson diversity index,  = 0.018), and differences in microbial communities were linked to disease severity ( = 0.022). Furthermore, statistically significant shifts in the microbiome were identified among SARS-CoV-2-positive and -negative patients, in the latter of whom a higher abundance of ( = 0.028) and a reduction in the abundance of ( = 0.025) were observed. Our study corroborates the growing evidence that increased SARS-CoV-2 RNA detection from NP swabs is associated with the early stages rather than the severity of COVID-19. Further, we demonstrate that SARS-CoV-2 causes a significant change in the respiratory microbiome. This work illustrates the utility of mNGS for the detection of SARS-CoV-2, for diagnosing coinfections without viral target enrichment or amplification, and for the analysis of the respiratory microbiome. SARS-CoV-2 has presented a rapidly accelerating global public health crisis. The ability to detect and analyze viral RNA from minimally invasive patient specimens is critical to the public health response. Metagenomic next-generation sequencing (mNGS) offers an opportunity to detect SARS-CoV-2 from nasopharyngeal (NP) swabs. This approach also provides information on the composition of the respiratory microbiome and its relationship to coinfections or the presence of other organisms that may impact SARS-CoV-2 disease progression and prognosis. Here, using direct Oxford Nanopore long-read third-generation metatranscriptomic and metagenomic sequencing of NP swab specimens from 50 patients under investigation for COVID-19, we detected SARS-CoV-2 sequences by applying the CosmosID bioinformatics platform. Further, we characterized coinfections and detected a decrease in the diversity of the microbiomes in these patients. Statistically significant shifts in the microbiome were identified among COVID-19-positive and -negative patients, in the latter of whom a higher abundance of and a reduction in the abundance of were observed. Our study also corroborates the growing evidence that increased SARS-CoV-2 RNA detection from NP swabs is associated with the early stages of disease rather than with severity of disease. This work illustrates the utility of mNGS for the detection and analysis of SARS-CoV-2 from NP swabs without viral target enrichment or amplification and for the analysis of the respiratory microbiome.

摘要

宏基因组下一代测序 (mNGS) 为直接从临床标本中检测新兴病原体提供了一种无偏倚的方法。与靶向方法相比,mNGS 还提供了微生物组组成的有价值信息,并可能揭示可能与疾病进展和预后相关的合并感染。为了评估直接 Oxford Nanopore 长读长第三代宏转录组和宏基因组测序用于检测严重急性呼吸综合征冠状病毒 2 (SARS-CoV-2) 和/或其他感染病原体的用途,我们对 50 名接受 2019 年冠状病毒病 (COVID-19) 调查的患者的鼻咽 (NP) 拭子标本进行了测序,并通过 CosmosID 生物信息学平台对数据进行了分析。此外,我们还对与四点严重指数相关的合并感染和微生物组进行了特征描述。通过 RT-PCR 检测到 77.5% (31/40) 的 SARS-CoV-2 阳性样本,这与较低的循环阈值 (Ct) 值和发病后天数较少相关。在采样时,在 SARS-CoV-2 阳性样本中检测到可能的细菌或病毒合并感染 12.5%。COVID-19 确诊患者的微生物多样性下降 (Shannon 多样性指数, = 0.0082;Chao 丰富度估计, = 0.0097;Simpson 多样性指数, = 0.018),微生物群落的差异与疾病严重程度相关 ( = 0.022)。此外,在 SARS-CoV-2 阳性和阴性患者之间鉴定到微生物组的统计学显著变化,在后一组中观察到更高的丰度 ( = 0.028) 和丰度降低 ( = 0.025)。我们的研究证实了越来越多的证据,即从 NP 拭子中检测到的 SARS-CoV-2 RNA 增加与 COVID-19 的早期阶段而不是严重程度相关。此外,我们证明 SARS-CoV-2 导致呼吸道微生物组发生显著变化。这项工作说明了 mNGS 用于检测 SARS-CoV-2 的实用性,用于在没有病毒靶标富集或扩增的情况下诊断合并感染,以及用于分析呼吸道微生物组。SARS-CoV-2 引发了迅速加速的全球公共卫生危机。从微创患者标本中检测和分析病毒 RNA 的能力对公共卫生应对至关重要。宏基因组下一代测序 (mNGS) 提供了从鼻咽 (NP) 拭子中检测 SARS-CoV-2 的机会。这种方法还提供了有关呼吸道微生物组组成及其与合并感染或存在其他可能影响 SARS-CoV-2 疾病进展和预后的生物体的关系的信息。在这里,我们使用直接 Oxford Nanopore 长读长第三代宏转录组和宏基因组测序对 50 名接受 COVID-19 调查的患者的 NP 拭子标本进行了测序,并通过应用 CosmosID 生物信息学平台检测到了 SARS-CoV-2 序列。此外,我们还对合并感染进行了特征描述,并检测到这些患者的微生物组多样性下降。在 COVID-19 阳性和阴性患者之间鉴定到了微生物组的统计学显著变化,在后一组中观察到更高的丰度 ( = 0.028) 和丰度降低 ( = 0.025)。我们的研究还证实了越来越多的证据,即从 NP 拭子中检测到的 SARS-CoV-2 RNA 增加与疾病的早期阶段而不是严重程度相关。这项工作说明了 mNGS 用于检测和分析 NP 拭子中 SARS-CoV-2 的实用性,而无需病毒靶标富集或扩增,也用于分析呼吸道微生物组。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b28e/7686804/3320b139654e/mBio.01969-20-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b28e/7686804/e91d5dc7f4c0/mBio.01969-20-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b28e/7686804/fdc8af400db2/mBio.01969-20-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b28e/7686804/3320b139654e/mBio.01969-20-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b28e/7686804/e91d5dc7f4c0/mBio.01969-20-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b28e/7686804/fdc8af400db2/mBio.01969-20-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b28e/7686804/3320b139654e/mBio.01969-20-f0003.jpg

相似文献

[1]
Metagenomic Next-Generation Sequencing of Nasopharyngeal Specimens Collected from Confirmed and Suspect COVID-19 Patients.

mBio. 2020-11-20

[2]
Metagenomic next-generation sequencing of nasopharyngeal microbiota in COVID-19 patients with different disease severities.

Microbiol Spectr. 2024-5-2

[3]
Metagenomic Sequencing To Detect Respiratory Viruses in Persons under Investigation for COVID-19.

J Clin Microbiol. 2020-12-17

[4]
Genomic characterization of the dominating Beta, V2 variant carrying vaccinated (Oxford-AstraZeneca) and nonvaccinated COVID-19 patient samples in Bangladesh: A metagenomics and whole-genome approach.

J Med Virol. 2022-4

[5]
Targeted Hybridization Capture of SARS-CoV-2 and Metagenomics Enables Genetic Variant Discovery and Nasal Microbiome Insights.

Microbiol Spectr. 2021-10-31

[6]
Diagnostic Performance of Self-Collected Saliva Versus Nasopharyngeal Swab for the Molecular Detection of SARS-CoV-2 in the Clinical Setting.

Microbiol Spectr. 2021-12-22

[7]
Diagnosis with Metagenomic Next-Generation Sequencing (mNGS) technology and real-time PCR for SARS-CoV-2 Omicron detection using various nasopharyngeal swabs in SARS-CoV-2 Omicron.

PLoS One. 2024

[8]
SARS-CoV-2 infection reduces human nasopharyngeal commensal microbiome with inclusion of pathobionts.

Sci Rep. 2021-12-15

[9]
Saliva is Comparable to Nasopharyngeal Swabs for Molecular Detection of SARS-CoV-2.

Microbiol Spectr. 2021-9-3

[10]
Metagenomics characterization of respiratory viral RNA pathogens in children under five years with severe acute respiratory infection in the Free State, South Africa.

J Med Virol. 2023-5

引用本文的文献

[1]
vPro-MS enables identification of human-pathogenic viruses from patient samples by untargeted proteomics.

Nat Commun. 2025-7-31

[2]
Nasopharyngeal microbiome composition by SARS-CoV-2 presence and severity.

Sci Rep. 2025-7-2

[3]
Cross-sectional Study: Diagnostic Accuracy of Next-generation Sequencing in a Tertiary Care Intensive Care Unit.

Indian J Crit Care Med. 2025-6

[4]
SIV/SARS-CoV-2 coinfection in rhesus macaques impacts viral shedding, host immunity, the microbiome, and viral evolution.

Front Immunol. 2025-5-20

[5]
Unveiling the role of the upper respiratory tract microbiome in susceptibility and severity to COVID-19.

Front Cell Infect Microbiol. 2025-5-13

[6]
Longitudinal dynamics of the nasopharyngeal microbiome in response to SARS-CoV-2 Omicron variant and HIV infection in Kenyan women and their children.

mSystems. 2025-5-20

[7]
Application of Metagenomic Long-Read Sequencing for the Diagnosis of Herpetic Uveitis.

Invest Ophthalmol Vis Sci. 2025-4-1

[8]
SIV/SARS-CoV-2 co-infection in rhesus macaques impacts viral shedding, host immunity, the microbiome, and viral evolution.

Res Sq. 2025-3-26

[9]
DEMINERS enables clinical metagenomics and comparative transcriptomic analysis by increasing throughput and accuracy of nanopore direct RNA sequencing.

Genome Biol. 2025-3-28

[10]
Age- and disease severity-associated changes in the nasopharyngeal microbiota of COVID-19 patients.

iScience. 2025-2-22

本文引用的文献

[1]
Genomic diversity of SARS-CoV-2 during early introduction into the Baltimore-Washington metropolitan area.

JCI Insight. 2021-3-22

[2]
Nanopore Targeted Sequencing for the Accurate and Comprehensive Detection of SARS-CoV-2 and Other Respiratory Viruses.

Small. 2020-6-24

[3]
Co-infections in people with COVID-19: a systematic review and meta-analysis.

J Infect. 2020-5-27

[4]
Co-infection with respiratory pathogens among COVID-2019 cases.

Virus Res. 2020-5-11

[5]
Metagenomic Analysis Reveals Clinical SARS-CoV-2 Infection and Bacterial or Viral Superinfection and Colonization.

Clin Chem. 2020-7-1

[6]
Coronavirus Disease 2019, Superinfections, and Antimicrobial Development: What Can We Expect?

Clin Infect Dis. 2020-12-17

[7]
Comparing the analytical performance of three SARS-CoV-2 molecular diagnostic assays.

J Clin Virol. 2020-4-26

[8]
Bacterial and Fungal Coinfection in Individuals With Coronavirus: A Rapid Review To Support COVID-19 Antimicrobial Prescribing.

Clin Infect Dis. 2020-12-3

[9]
Coinfection in SARS-CoV-2 infected patients: Where are influenza virus and rhinovirus/enterovirus?

J Med Virol. 2020-10

[10]
Co-detection of respiratory pathogens in patients hospitalized with Coronavirus viral disease-2019 pneumonia.

J Med Virol. 2020-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索