Suppr超能文献

剪接体基因 PPIL1 和 PRP17 突变导致伴有小头畸形的神经退行性桥小脑发育不良。

Mutations in Spliceosomal Genes PPIL1 and PRP17 Cause Neurodegenerative Pontocerebellar Hypoplasia with Microcephaly.

机构信息

Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA; Rady Children's Institute for Genomic Medicine, San Diego, CA 92130, USA.

Division of Molecular Medicine, Leeds Institute of Medical Research, University of Leeds, Leeds LS9 7TF, UK.

出版信息

Neuron. 2021 Jan 20;109(2):241-256.e9. doi: 10.1016/j.neuron.2020.10.035. Epub 2020 Nov 20.

Abstract

Autosomal-recessive cerebellar hypoplasia and ataxia constitute a group of heterogeneous brain disorders caused by disruption of several fundamental cellular processes. Here, we identified 10 families showing a neurodegenerative condition involving pontocerebellar hypoplasia with microcephaly (PCHM). Patients harbored biallelic mutations in genes encoding the spliceosome components Peptidyl-Prolyl Isomerase Like-1 (PPIL1) or Pre-RNA Processing-17 (PRP17). Mouse knockouts of either gene were lethal in early embryogenesis, whereas PPIL1 patient mutation knockin mice showed neuron-specific apoptosis. Loss of either protein affected splicing integrity, predominantly affecting short and high GC-content introns and genes involved in brain disorders. PPIL1 and PRP17 form an active isomerase-substrate interaction, but we found that isomerase activity is not critical for function. Thus, we establish disrupted splicing integrity and "major spliceosome-opathies" as a new mechanism underlying PCHM and neurodegeneration and uncover a non-enzymatic function of a spliceosomal proline isomerase.

摘要

常染色体隐性小脑发育不良伴共济失调是一组由多种基本细胞过程紊乱引起的异质性脑疾病。在这里,我们鉴定了 10 个家族,这些家族表现出一种涉及桥脑小脑发育不良伴小头畸形(PCHM)的神经退行性疾病。患者携带编码剪接体成分肽酰脯氨酰异构酶样 1(PPIL1)或前 RNA 加工 17(PRP17)的基因的双等位基因突变。这两种基因的小鼠敲除在胚胎早期都是致命的,而 PPIL1 患者突变敲入小鼠则表现出神经元特异性凋亡。两种蛋白质的缺失均影响剪接完整性,主要影响短和高 GC 含量内含子以及与脑疾病相关的基因。PPIL1 和 PRP17 形成一个活跃的异构酶-底物相互作用,但我们发现异构酶活性对于功能不是关键的。因此,我们确立了剪接完整性的破坏和“主要剪接体病”作为 PCHM 和神经退行性变的新机制,并揭示了剪接体脯氨酰异构酶的非酶功能。

相似文献

1
Mutations in Spliceosomal Genes PPIL1 and PRP17 Cause Neurodegenerative Pontocerebellar Hypoplasia with Microcephaly.
Neuron. 2021 Jan 20;109(2):241-256.e9. doi: 10.1016/j.neuron.2020.10.035. Epub 2020 Nov 20.
2
Splicing Control of Pontocerebellar Development.
Neuron. 2021 Jan 20;109(2):191-192. doi: 10.1016/j.neuron.2020.12.021.
3
A founder PPIL1 variant underlies a recognizable form of microlissencephaly with pontocerebellar hypoplasia.
Clin Genet. 2023 Sep;104(3):356-364. doi: 10.1111/cge.14357. Epub 2023 May 15.
4
Structural and Functional Insights into Human Nuclear Cyclophilins.
Biomolecules. 2018 Dec 4;8(4):161. doi: 10.3390/biom8040161.
5
A large intrinsically disordered region in SKIP and its disorder-order transition induced by PPIL1 binding revealed by NMR.
J Biol Chem. 2010 Feb 12;285(7):4951-63. doi: 10.1074/jbc.M109.087528. Epub 2009 Dec 9.
7
Modeling a human CLP1 mutation in mouse identifies an accumulation of tyrosine pre-tRNA fragments causing pontocerebellar hypoplasia type 10.
Biochem Biophys Res Commun. 2021 Sep 17;570:60-66. doi: 10.1016/j.bbrc.2021.07.036. Epub 2021 Jul 14.
8
Homozygous Truncating Variants in TBC1D23 Cause Pontocerebellar Hypoplasia and Alter Cortical Development.
Am J Hum Genet. 2017 Sep 7;101(3):428-440. doi: 10.1016/j.ajhg.2017.07.010. Epub 2017 Aug 17.
10
Clinical and genetic spectrum of AMPD2-related pontocerebellar hypoplasia type 9.
Eur J Hum Genet. 2018 May;26(5):695-708. doi: 10.1038/s41431-018-0098-2. Epub 2018 Feb 20.

引用本文的文献

2
Transcriptome-wide outlier approach identifies individuals with minor spliceopathies.
medRxiv. 2025 Jan 3:2025.01.02.24318941. doi: 10.1101/2025.01.02.24318941.
5
7
Considerations for reporting variants in novel candidate genes identified during clinical genomic testing.
Genet Med. 2024 Oct;26(10):101199. doi: 10.1016/j.gim.2024.101199. Epub 2024 Jun 26.
8
Massively parallel characterization of regulatory elements in the developing human cortex.
Science. 2024 May 24;384(6698):eadh0559. doi: 10.1126/science.adh0559.

本文引用的文献

1
Developmental Attenuation of Neuronal Apoptosis by Neural-Specific Splicing of Bak1 Microexon.
Neuron. 2020 Sep 23;107(6):1180-1196.e8. doi: 10.1016/j.neuron.2020.06.036. Epub 2020 Jul 24.
3
Metascape provides a biologist-oriented resource for the analysis of systems-level datasets.
Nat Commun. 2019 Apr 3;10(1):1523. doi: 10.1038/s41467-019-09234-6.
4
Splicing and neurodegeneration: Insights and mechanisms.
Wiley Interdiscip Rev RNA. 2019 Jul;10(4):e1532. doi: 10.1002/wrna.1532. Epub 2019 Mar 20.
5
Autosomal Recessive Cerebellar Ataxias: Paving the Way toward Targeted Molecular Therapies.
Neuron. 2019 Feb 20;101(4):560-583. doi: 10.1016/j.neuron.2019.01.049.
6
Structures of the human spliceosomes before and after release of the ligated exon.
Cell Res. 2019 Apr;29(4):274-285. doi: 10.1038/s41422-019-0143-x. Epub 2019 Feb 6.
7
A human postcatalytic spliceosome structure reveals essential roles of metazoan factors for exon ligation.
Science. 2019 Feb 15;363(6428):710-714. doi: 10.1126/science.aaw5569. Epub 2019 Jan 31.
8
Alternative splicing of neuronal genes: new mechanisms and new therapies.
Curr Opin Neurobiol. 2019 Aug;57:26-31. doi: 10.1016/j.conb.2018.12.013. Epub 2019 Jan 28.
9
Structural and Functional Insights into Human Nuclear Cyclophilins.
Biomolecules. 2018 Dec 4;8(4):161. doi: 10.3390/biom8040161.
10
Genome-wide Map of R-Loop-Induced Damage Reveals How a Subset of R-Loops Contributes to Genomic Instability.
Mol Cell. 2018 Aug 16;71(4):487-497.e3. doi: 10.1016/j.molcel.2018.06.037. Epub 2018 Aug 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验