Molecular Enzymology Group, University of Groningen, Nijenborgh 4, 9747AG, Groningen, The Netherlands.
Molecular Enzymology Group, University of Groningen, Nijenborgh 4, 9747AG, Groningen, The Netherlands.
Enzyme Microb Technol. 2020 Dec;142:109692. doi: 10.1016/j.enzmictec.2020.109692. Epub 2020 Oct 14.
The current chemical process for industrial indigo production puts a heavy burden on the environment. An attractive option would be to develop an alternative biotechnological process which does not rely on a petrochemical. This study describes a new biotransformation approach in which l-tryptophan is used as starting material. Its conversion to indigo can be achieved through recombinant overexpression of a bifunctional fusion enzyme, flavin-containing monooxygenase (FMO) fused to tryptophanase (TRP). First, TRP converts l-tryptophan into pyruvate, ammonia and indole. The formed indole serves as substrate for FMO, resulting in indigo formation, while pyruvate fuels the cells for regenerating the required NADPH. To optimize this bioconversion, different fusion constructs were tested. Fusing TRP to FMO at either the N-terminus (TRP-FMO) or the C-terminus (FMO-TRP) resulted in similar high expression levels of bifunctional fusion enzymes. Using whole cells and l-tryptophan as a precursor, high production levels of indigo could be obtained, significantly higher when compared with cells containing only overexpressed FMO. The TRP-FMO containing cells gave the highest yield of indigo resulting in full conversion of 2.0 g l-tryptophan into 1.7 g indigo per liter of culture. The process developed in this study provides an alternative biotransformation approach for the production of indigo starting from biobased starting material.
当前工业靛蓝的化学生产工艺对环境造成了沉重负担。一种有吸引力的选择是开发一种不依赖石化产品的替代生物技术工艺。本研究描述了一种新的生物转化方法,其中使用 l-色氨酸作为起始原料。通过重组表达黄素单加氧酶(FMO)与色氨酸酶(TRP)融合的双功能融合酶,可以将其转化为靛蓝。首先,TRP 将 l-色氨酸转化为丙酮酸、氨和吲哚。形成的吲哚作为 FMO 的底物,导致靛蓝的形成,而丙酮酸为细胞再生所需的 NADPH 提供燃料。为了优化这种生物转化,测试了不同的融合构建体。将 TRP 融合到 FMO 的 N 端(TRP-FMO)或 C 端(FMO-TRP),得到的双功能融合酶表达水平相似。使用全细胞和 l-色氨酸作为前体,可以获得高浓度的靛蓝,与仅表达过表达 FMO 的细胞相比,产量显著提高。含有 TRP-FMO 的细胞产生的靛蓝产量最高,将 2.0 g l-色氨酸完全转化为 1.7 g 靛蓝/升培养物。本研究开发的工艺提供了一种从生物基起始原料生产靛蓝的替代生物转化方法。