Walker Kenneth T, Li Ivy S, Keane Jennifer, Goosens Vivianne J, Song Wenzhe, Lee Koon-Yang, Ellis Tom
Imperial College Centre for Synthetic Biology, Imperial College London, London, UK.
Department of Bioengineering, Imperial College London, London, UK.
Nat Biotechnol. 2025 Mar;43(3):345-354. doi: 10.1038/s41587-024-02194-3. Epub 2024 Apr 2.
Environmental concerns are driving interest in postpetroleum synthetic textiles produced from microbial and fungal sources. Bacterial cellulose (BC) is a promising sustainable leather alternative, on account of its material properties, low infrastructure needs and biodegradability. However, for alternative textiles like BC to be fully sustainable, alternative ways to dye textiles need to be developed alongside alternative production methods. To address this, we genetically engineer Komagataeibacter rhaeticus to create a bacterial strain that grows self-pigmenting BC. Melanin biosynthesis in the bacteria from recombinant tyrosinase expression achieves dark black coloration robust to material use. Melanated BC production can be scaled up for the construction of prototype fashion products, and we illustrate the potential of combining engineered self-pigmentation with tools from synthetic biology, through the optogenetic patterning of gene expression in cellulose-producing bacteria. With this study, we demonstrate that combining genetic engineering with current and future methods of textile biofabrication has the potential to create a new class of textiles.
环境问题促使人们对源自微生物和真菌的石油后合成纺织品产生兴趣。细菌纤维素(BC)因其材料特性、低基础设施需求和生物可降解性,是一种很有前景的可持续皮革替代品。然而,要使像BC这样的替代纺织品完全可持续,除了替代生产方法外,还需要开发替代的纺织品染色方法。为了解决这个问题,我们对莱茵戈氏杆菌进行基因工程改造,以创建一种能生长出自我着色BC的细菌菌株。通过重组酪氨酸酶表达在细菌中进行黑色素生物合成,可实现对材料使用具有耐受性的深黑色着色。黑色素化BC的生产可以扩大规模用于构建原型时尚产品,并且我们通过对产纤维素细菌中的基因表达进行光遗传学模式化,展示了将工程化的自我着色与合成生物学工具相结合的潜力。通过这项研究,我们证明将基因工程与当前和未来的纺织品生物制造方法相结合,有可能创造出一类新型纺织品。