Kim Hyun Jin, Lee Yeda, Shin Yuni, Choi Suhye, Oh Jinok, Kim Suwon, Ahn Jungoh, Choi Kwon-Young, Joo Jeong Chan, Bhatia Shashi Kant, Yang Yung-Hun
Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea.
Applied Biological Engineering, University of Science and Technology, Yuseong-gu, Daejeon, Republic of Korea.
J Ind Microbiol Biotechnol. 2024 Dec 31;52. doi: 10.1093/jimb/kuae048.
Indigo is a plant-based natural blue dye that can be produced via chemical synthesis and biological pathways. However, the toxic reduction processes and intracellular production of indigo through microbial metabolism are often limited by insolubility of indigo and complex downstream processing, causing environmental issues in the dyeing processes. Additionally, indican, a precursor of indigo with a glucose moiety, is highly soluble and can be easily converted into indoxyl by β-glucosidase, forming indigo under mild conditions. We constructed an indican-producing strain Escherichia coli BL21 HI201 by introducing a UDP-glycosyltransferase (ugt) into an indoxyl production system containing tryptophanse (tnaA) and flavin-containing monooxygenase (FMO) genes, enabling conversion of tryptophan into indican. Testing of the effect by various carbon sources suggested that glucose is one of the major factors affecting the ratio of indigo to indican, and increase in glucose concentration to more than 1.5% could produce sole indican without indigo. Under optimal conditions, E. coli BL21 HI201 biosynthesized 5.65 mM indican from tryptophan. Additionally, after deletion of various β-glucosidase genes, the bglA knockout strain E. coli BL21 HI204 produced more indican, achieving 6.79 mM after 24 hr of cultivation. This study demonstrated the strategic production of indican through the installation of a production system, deletion of a byproduct pathway, and control of glucose concentration.
ONE-SENTENCE SUMMARY: This paper demonstrates the strategic enhancement of indican production in genetically engineered Escherichia coli BL21 by optimizing metabolic pathways and controlling glucose concentrations.
靛蓝是一种基于植物的天然蓝色染料,可通过化学合成和生物途径生产。然而,通过微生物代谢进行靛蓝的毒性还原过程和细胞内生产通常受到靛蓝不溶性和复杂下游加工的限制,在染色过程中会引发环境问题。此外,靛苷是靛蓝的前体,带有葡萄糖部分,具有高度溶解性,可被β-葡萄糖苷酶轻松转化为吲哚酚,在温和条件下形成靛蓝。我们通过将尿苷二磷酸糖基转移酶(ugt)引入包含色氨酸酶(tnaA)和含黄素单加氧酶(FMO)基因的吲哚酚生产系统,构建了一株产靛苷的大肠杆菌BL21 HI201,实现了色氨酸向靛苷的转化。对各种碳源作用效果的测试表明,葡萄糖是影响靛蓝与靛苷比例的主要因素之一,将葡萄糖浓度提高到1.5%以上可产生不含靛蓝的单一靛苷。在最佳条件下,大肠杆菌BL21 HI201从色氨酸生物合成了5.65 mM靛苷。此外,在缺失各种β-葡萄糖苷酶基因后,bglA基因敲除菌株大肠杆菌BL21 HI204产生了更多的靛苷,培养24小时后达到6.79 mM。本研究通过建立生产系统、删除副产物途径和控制葡萄糖浓度,展示了靛苷的策略性生产。
本文通过优化代谢途径和控制葡萄糖浓度,展示了在基因工程大肠杆菌BL21中策略性提高靛苷产量的方法。