Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany.
Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany.
J Mol Biol. 2021 Jan 22;433(2):166719. doi: 10.1016/j.jmb.2020.11.018. Epub 2020 Nov 20.
Ribosomes are mandatory for growth and survival. The complex process of ribosome biogenesis is located in nucleoli and requires action of the RNA polymerases I-III, together with a multitude of processing factors involved in rRNA cleavage and maturation. Impaired ribosome biogenesis and loss of nucleolar integrity triggers nucleolar stress, which classically stabilizes the tumor suppressor p53 and induces cell cycle arrest and apoptosis. Nucleolar stress is implemented in modern anti-cancer therapies, however, also emerges as contributor to diverse pathological conditions. These include ribosomopathies, such as the Shwachman Bodian Diamond Syndrome (SBDS), which are not only characterized by nucleolar stress, but paradoxically also increased cancer incidence. Wnt signaling is tightly coupled to cell proliferation and is constitutively activated in various tumor types. In addition, the Wnt/β-Catenin pathway regulates ribosome formation. Here, we demonstrate that induction of nucleolar stress by different strategies stimulates the Wnt/β-Catenin pathway. We show that depletion of the key ribosomopathy factor SBDS, or the nucleolar factors Nucleophosmin (NPM), Pescadillo 1 (PES1) or Peter Pan (PPAN) by si RNA-mediated knockdown or CRISPR/Cas9 strategy activates Wnt/β-Catenin signaling in a β-Catenin-dependent manner and stabilizes β-Catenin in human cancer cells. Moreover, triggering nucleolar stress by the chemotherapeutic agents Actinomycin D or the RNA polymerase I inhibitor CX-5461 stimulates expression of Wnt/β-Catenin targets, which is followed by the p53 target CDKN1A (p21). As PPAN expression is induced by Wnt/β-Catenin signaling, our data establish a novel feedback mechanism and reveal that nucleolar stress over-activates the Wnt/β-Catenin pathway, which most likely serves as compensatory mechanism to sustain ribosome biogenesis.
核糖体对于生长和存活是必需的。核糖体生物发生的复杂过程位于核仁中,需要 RNA 聚合酶 I-III 的作用,以及涉及 rRNA 切割和成熟的多种加工因子。核糖体生物发生受损和核仁完整性丧失会引发核仁应激,这经典地稳定肿瘤抑制因子 p53,并诱导细胞周期停滞和细胞凋亡。核仁应激被应用于现代抗癌疗法中,但也作为多种病理状况的贡献因素出现。这些包括核糖体病,如 Shwachman Bodian Diamond 综合征 (SBDS),其不仅以核仁应激为特征,而且反常地还增加了癌症发病率。Wnt 信号与细胞增殖紧密耦联,并在各种肿瘤类型中持续激活。此外,Wnt/β-连环蛋白途径调节核糖体的形成。在这里,我们证明了通过不同策略诱导核仁应激会刺激 Wnt/β-连环蛋白途径。我们表明,通过 siRNA 介导的敲低或 CRISPR/Cas9 策略耗尽关键核糖体病因子 SBDS 或核仁因子 Nucleophosmin (NPM)、Pescadillo 1 (PES1) 或 Peter Pan (PPAN),以β-连环蛋白依赖性方式激活 Wnt/β-连环蛋白信号,并稳定人癌细胞中的β-连环蛋白。此外,通过化疗药物 Actinomycin D 或 RNA 聚合酶 I 抑制剂 CX-5461 触发核仁应激会刺激 Wnt/β-连环蛋白靶标的表达,随后是 p53 靶标 CDKN1A (p21)。由于 PPAN 表达受 Wnt/β-连环蛋白信号的诱导,我们的数据建立了一个新的反馈机制,并揭示了核仁应激过度激活了 Wnt/β-连环蛋白途径,这很可能是维持核糖体生物发生的补偿机制。