Suppr超能文献

基于非小细胞肺癌药物代谢组学特征和转运体多态性的吉非替尼诱导严重皮疹预测模型的建立与应用

Establishment and application of a predictive model for gefitinib-induced severe rash based on pharmacometabolomic profiling and polymorphisms of transporters in non-small cell lung cancer.

作者信息

Guan Shaoxing, Chen Xi, Xin Shuang, Liu Shu, Yang Yunpeng, Fang Wenfeng, Huang Yan, Zhao Hongyun, Zhu Xia, Zhuang Wei, Wang Fei, Feng Wei, Zhang Xiaoxu, Huang Min, Wang Xueding, Zhang Li

机构信息

Laboratory of Drug Metabolism and Pharmacokinetics, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou City, Guangzhou 510080, Guangdong Province, PR China.

State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510080, Guangdong Province, PR China.

出版信息

Transl Oncol. 2021 Jan;14(1):100951. doi: 10.1016/j.tranon.2020.100951. Epub 2020 Nov 19.

Abstract

BACKGROUND

Rash is a well-known predictor of survival for patients with gefitinib therapy with non-small cell lung cancer (NSCLC). However, whether patients with more severe rash obtain the more survival benefits from gefitinib is still unknown, and predicted model for severe rash is needed.

METHODS

The relationship between gefitinib-induced rash and progression free survival (PFS) was primarily explored in the retrospective cohort. The association between rash and gefitinib/metabolites concentration and genetic polymorphisms were determined by pharmacometabolomic and pharmacogenomics methods in the exploratory cohort and validated in an external cohort.

RESULTS

The survival for patients with rash was significantly higher than that of patients without rash (p = 0.0002, p = 0.0089), but no difference was found between grade 1/2 or grade 3/4. Only the concentration of gefitinib, but not its metabolites, was found to be associated with severe rash, and the cutoff value of gefitinib was 204.6 ng/mL conducted by ROC curve analysis (AUC=0.685). A predictive model for severe rash was established: gefitinib concentration (OR = 11.523, 95% CI = 2.898-64.016, p = 0.0016), SLC22A8 rs4149179(CT vs CC, OR = 3.156, 95% CI = 0.958-11.164, p = 0.0629), SLC22A1 rs4709400(CG vs CC, OR = 10.267, 95% CI = 2.067-72.465, p = 0.0087; GG vs CC, OR = 5.103, 95% CI = 1.032-33.938, p = 0.061). This model was confirmed in the validation cohort with an excellent predictive ability (AUC = 0.749, 95% CI = 0.710-0.951).

CONCLUSIONS

Our finding demonstrated that the incidence, not the severity, of gefitinib-induced rash predicted improved survival, the gefitinib concentration and polymorphisms of SLC22A8 and SLC22A1 were recommended to manage severe rash.

摘要

背景

皮疹是吉非替尼治疗非小细胞肺癌(NSCLC)患者生存的一个众所周知的预测指标。然而,皮疹更严重的患者是否能从吉非替尼中获得更多生存益处仍不清楚,因此需要建立严重皮疹的预测模型。

方法

在回顾性队列中初步探讨吉非替尼诱导的皮疹与无进展生存期(PFS)之间的关系。通过药物代谢组学和药物基因组学方法在探索性队列中确定皮疹与吉非替尼/代谢物浓度及基因多态性之间的关联,并在外部队列中进行验证。

结果

有皮疹患者的生存率显著高于无皮疹患者(p = 0.0002,p = 0.0089),但1/2级或3/4级之间未发现差异。仅发现吉非替尼的浓度与严重皮疹有关,而其代谢物无关,通过ROC曲线分析得出吉非替尼的临界值为204.6 ng/mL(AUC = 0.685)。建立了严重皮疹的预测模型:吉非替尼浓度(OR = 11.523,95%CI = 2.898 - 64.016,p = 0.0016),SLC22A8 rs4149179(CT与CC相比,OR = 3.156,95%CI = 0.958 - 11.164,p = 0.0629),SLC22A1 rs4709400(CG与CC相比,OR = 10.267,95%CI = 2.067 - 72.465,p = 0.0087;GG与CC相比,OR = 5.103,95%CI = 1.032 - 33.938,p = 0.061)。该模型在验证队列中得到证实,具有出色的预测能力(AUC = 0.749,95%CI = 0.710 - 0.951)。

结论

我们的研究结果表明,吉非替尼诱导的皮疹的发生率而非严重程度可预测生存改善,建议根据吉非替尼浓度以及SLC22A8和SLC22A1的基因多态性来处理严重皮疹。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/077d/7689337/80b71e80c93e/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验