Suppr超能文献

用于推断 3D 染色质结构的主曲线方法。

Principal curve approaches for inferring 3D chromatin architecture.

机构信息

Department of Statistics, Stanford University, Stanford, CA 94305, USA and Department of Epidemiology and Biostatistics, University of California, San Francisco, CA 94143, USA.

出版信息

Biostatistics. 2022 Apr 13;23(2):626-642. doi: 10.1093/biostatistics/kxaa046.

Abstract

Three-dimensional (3D) genome spatial organization is critical for numerous cellular processes, including transcription, while certain conformation-driven structural alterations are frequently oncogenic. Genome architecture had been notoriously difficult to elucidate, but the advent of the suite of chromatin conformation capture assays, notably Hi-C, has transformed understanding of chromatin structure and provided downstream biological insights. Although many findings have flowed from direct analysis of the pairwise proximity data produced by these assays, there is added value in generating corresponding 3D reconstructions deriving from superposing genomic features on the reconstruction. Accordingly, many methods for inferring 3D architecture from proximity data have been advanced. However, none of these approaches exploit the fact that single chromosome solutions constitute a one-dimensional (1D) curve in 3D. Rather, this aspect has either been addressed by imposition of constraints, which is both computationally burdensome and cell type specific, or ignored with contiguity imposed after the fact. Here, we target finding a 1D curve by extending principal curve methodology to the metric scaling problem. We illustrate how this approach yields a sequence of candidate solutions, indexed by an underlying smoothness or degrees-of-freedom parameter, and propose methods for selection from this sequence. We apply the methodology to Hi-C data obtained on IMR90 cells and so are positioned to evaluate reconstruction accuracy by referencing orthogonal imaging data. The results indicate the utility and reproducibility of our principal curve approach in the face of underlying structural variation.

摘要

三维(3D)基因组空间组织对于包括转录在内的许多细胞过程至关重要,而某些构象驱动的结构改变通常是致癌的。基因组结构一直难以阐明,但一系列染色质构象捕获测定法(尤其是 Hi-C)的出现改变了人们对染色质结构的理解,并提供了下游的生物学见解。尽管许多发现都源于对这些测定产生的成对接近数据的直接分析,但从将基因组特征叠加在重建上来生成相应的 3D 重建也有附加价值。因此,已经提出了许多从接近数据推断 3D 结构的方法。然而,这些方法都没有利用单条染色体解决方案在 3D 中构成一维(1D)曲线的事实。相反,这个方面要么通过施加约束来解决,这既计算负担繁重,又针对特定的细胞类型,要么在事实之后施加连续性而忽略它。在这里,我们通过将主曲线方法扩展到度量缩放问题来解决找到 1D 曲线的问题。我们说明了这种方法如何产生一系列候选解决方案,这些解决方案由一个潜在的平滑度或自由度参数索引,并提出了从这个序列中进行选择的方法。我们将该方法应用于在 IMR90 细胞上获得的 Hi-C 数据,因此可以通过参考正交成像数据来评估重建的准确性。结果表明,我们的主曲线方法在存在潜在结构变化的情况下具有实用性和可重复性。

相似文献

1
Principal curve approaches for inferring 3D chromatin architecture.
Biostatistics. 2022 Apr 13;23(2):626-642. doi: 10.1093/biostatistics/kxaa046.
2
Improved accuracy assessment for 3D genome reconstructions.
BMC Bioinformatics. 2018 May 30;19(1):196. doi: 10.1186/s12859-018-2214-2.
3
Assessing stationary distributions derived from chromatin contact maps.
BMC Bioinformatics. 2020 Feb 24;21(1):73. doi: 10.1186/s12859-020-3424-y.
4
Assessing chromatin relocalization in 3D using the patient rule induction method.
Biostatistics. 2023 Jul 14;24(3):618-634. doi: 10.1093/biostatistics/kxab033.
5
Does multi-way, long-range chromatin contact data advance 3D genome reconstruction?
BMC Bioinformatics. 2023 Feb 24;24(1):64. doi: 10.1186/s12859-023-05170-x.
6
Reproducibility of 3D chromatin configuration reconstructions.
Biostatistics. 2014 Jul;15(3):442-56. doi: 10.1093/biostatistics/kxu003. Epub 2014 Feb 11.
7
Reconstruction of 3D genome architecture via a two-stage algorithm.
BMC Bioinformatics. 2015 Nov 9;16:373. doi: 10.1186/s12859-015-0799-2.
9
Deciphering High-Resolution 3D Chromatin Organization via Capture Hi-C.
J Vis Exp. 2022 Oct 14(188). doi: 10.3791/64166.
10
Can 3D diploid genome reconstruction from unphased Hi-C data be salvaged?
NAR Genom Bioinform. 2022 May 12;4(2):lqac038. doi: 10.1093/nargab/lqac038. eCollection 2022 Jun.

引用本文的文献

1
STATISTICAL CURVE MODELS FOR INFERRING 3D CHROMATIN ARCHITECTURE.
Ann Appl Stat. 2024 Dec;18(4):2979-3006. doi: 10.1214/24-AOAS1917. Epub 2024 Oct 31.
2
Advancements and future directions in single-cell Hi-C based 3D chromatin modeling.
Comput Struct Biotechnol J. 2024 Oct 3;23:3549-3558. doi: 10.1016/j.csbj.2024.09.026. eCollection 2024 Dec.
3
Does multi-way, long-range chromatin contact data advance 3D genome reconstruction?
BMC Bioinformatics. 2023 Feb 24;24(1):64. doi: 10.1186/s12859-023-05170-x.
4
Can 3D diploid genome reconstruction from unphased Hi-C data be salvaged?
NAR Genom Bioinform. 2022 May 12;4(2):lqac038. doi: 10.1093/nargab/lqac038. eCollection 2022 Jun.
5
Assessing chromatin relocalization in 3D using the patient rule induction method.
Biostatistics. 2023 Jul 14;24(3):618-634. doi: 10.1093/biostatistics/kxab033.

本文引用的文献

1
Bayesian Estimation of Three-Dimensional Chromosomal Structure from Single-Cell Hi-C Data.
J Comput Biol. 2019 Nov;26(11):1191-1202. doi: 10.1089/cmb.2019.0100. Epub 2019 Jun 18.
2
Hierarchical Reconstruction of High-Resolution 3D Models of Large Chromosomes.
Sci Rep. 2019 Mar 21;9(1):4971. doi: 10.1038/s41598-019-41369-w.
3
Improved accuracy assessment for 3D genome reconstructions.
BMC Bioinformatics. 2018 May 30;19(1):196. doi: 10.1186/s12859-018-2214-2.
5
miniMDS: 3D structural inference from high-resolution Hi-C data.
Bioinformatics. 2017 Jul 15;33(14):i261-i266. doi: 10.1093/bioinformatics/btx271.
6
HiCRep: assessing the reproducibility of Hi-C data using a stratum-adjusted correlation coefficient.
Genome Res. 2017 Nov;27(11):1939-1949. doi: 10.1101/gr.220640.117. Epub 2017 Aug 30.
7
3D structures of individual mammalian genomes studied by single-cell Hi-C.
Nature. 2017 Apr 6;544(7648):59-64. doi: 10.1038/nature21429. Epub 2017 Mar 13.
8
Massively multiplex single-cell Hi-C.
Nat Methods. 2017 Mar;14(3):263-266. doi: 10.1038/nmeth.4155. Epub 2017 Jan 30.
9
Spatial organization of chromatin domains and compartments in single chromosomes.
Science. 2016 Aug 5;353(6299):598-602. doi: 10.1126/science.aaf8084. Epub 2016 Jul 21.
10
A random effect model for reconstruction of spatial chromatin structure.
Biometrics. 2017 Mar;73(1):52-62. doi: 10.1111/biom.12544. Epub 2016 May 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验