Suppr超能文献

miniMDS:从高分辨率 Hi-C 数据推断 3D 结构。

miniMDS: 3D structural inference from high-resolution Hi-C data.

机构信息

Department of Biochemistry and Molecular Biology and Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA, USA.

出版信息

Bioinformatics. 2017 Jul 15;33(14):i261-i266. doi: 10.1093/bioinformatics/btx271.

Abstract

MOTIVATION

Recent experiments have provided Hi-C data at resolution as high as 1 kbp. However, 3D structural inference from high-resolution Hi-C datasets is often computationally unfeasible using existing methods.

RESULTS

We have developed miniMDS, an approximation of multidimensional scaling (MDS) that partitions a Hi-C dataset, performs high-resolution MDS separately on each partition, and then reassembles the partitions using low-resolution MDS. miniMDS is faster, more accurate, and uses less memory than existing methods for inferring the human genome at high resolution (10 kbp).

AVAILABILITY AND IMPLEMENTATION

A Python implementation of miniMDS is available on GitHub: https://github.com/seqcode/miniMDS .

CONTACT

mahony@psu.edu.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

最近的实验提供了分辨率高达 1 kbp 的 Hi-C 数据。然而,使用现有方法,从高分辨率 Hi-C 数据集进行 3D 结构推断在计算上通常是不可行的。

结果

我们开发了 miniMDS,它是多维尺度(MDS)的一种近似,可对 Hi-C 数据集进行分区,在每个分区上分别进行高分辨率 MDS,然后使用低分辨率 MDS 重新组装分区。与现有方法相比,miniMDS 用于推断人类基因组的高分辨率(10 kbp)时速度更快、更准确且使用的内存更少。

可用性和实现

miniMDS 的 Python 实现可在 GitHub 上获得:https://github.com/seqcode/miniMDS。

联系方式

mahony@psu.edu

补充信息

补充数据可在“Bioinformatics”在线获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a9f/5870652/aef7807e6926/btx271f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验