Department of Biochemistry and Molecular Biology and Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA, USA.
Bioinformatics. 2017 Jul 15;33(14):i261-i266. doi: 10.1093/bioinformatics/btx271.
Recent experiments have provided Hi-C data at resolution as high as 1 kbp. However, 3D structural inference from high-resolution Hi-C datasets is often computationally unfeasible using existing methods.
We have developed miniMDS, an approximation of multidimensional scaling (MDS) that partitions a Hi-C dataset, performs high-resolution MDS separately on each partition, and then reassembles the partitions using low-resolution MDS. miniMDS is faster, more accurate, and uses less memory than existing methods for inferring the human genome at high resolution (10 kbp).
A Python implementation of miniMDS is available on GitHub: https://github.com/seqcode/miniMDS .
Supplementary data are available at Bioinformatics online.
最近的实验提供了分辨率高达 1 kbp 的 Hi-C 数据。然而,使用现有方法,从高分辨率 Hi-C 数据集进行 3D 结构推断在计算上通常是不可行的。
我们开发了 miniMDS,它是多维尺度(MDS)的一种近似,可对 Hi-C 数据集进行分区,在每个分区上分别进行高分辨率 MDS,然后使用低分辨率 MDS 重新组装分区。与现有方法相比,miniMDS 用于推断人类基因组的高分辨率(10 kbp)时速度更快、更准确且使用的内存更少。
miniMDS 的 Python 实现可在 GitHub 上获得:https://github.com/seqcode/miniMDS。
补充数据可在“Bioinformatics”在线获得。