Stevens Tim J, Lando David, Basu Srinjan, Atkinson Liam P, Cao Yang, Lee Steven F, Leeb Martin, Wohlfahrt Kai J, Boucher Wayne, O'Shaughnessy-Kirwan Aoife, Cramard Julie, Faure Andre J, Ralser Meryem, Blanco Enrique, Morey Lluis, Sansó Miriam, Palayret Matthieu G S, Lehner Ben, Di Croce Luciano, Wutz Anton, Hendrich Brian, Klenerman Dave, Laue Ernest D
Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom.
MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, United Kingdom.
Nature. 2017 Apr 6;544(7648):59-64. doi: 10.1038/nature21429. Epub 2017 Mar 13.
The folding of genomic DNA from the beads-on-a-string-like structure of nucleosomes into higher-order assemblies is crucially linked to nuclear processes. Here we calculate 3D structures of entire mammalian genomes using data from a new chromosome conformation capture procedure that allows us to first image and then process single cells. The technique enables genome folding to be examined at a scale of less than 100 kb, and chromosome structures to be validated. The structures of individual topological-associated domains and loops vary substantially from cell to cell. By contrast, A and B compartments, lamina-associated domains and active enhancers and promoters are organized in a consistent way on a genome-wide basis in every cell, suggesting that they could drive chromosome and genome folding. By studying genes regulated by pluripotency factor and nucleosome remodelling deacetylase (NuRD), we illustrate how the determination of single-cell genome structure provides a new approach for investigating biological processes.
基因组DNA从核小体的串珠状结构折叠成更高阶组装体的过程与细胞核过程紧密相连。在这里,我们利用一种新的染色体构象捕获程序的数据计算整个哺乳动物基因组的三维结构,该程序使我们能够先对单细胞进行成像,然后对其进行处理。这项技术能够在小于100 kb的尺度上研究基因组折叠,并验证染色体结构。单个拓扑相关结构域和环的结构在细胞间差异很大。相比之下,A和B区室、核纤层相关结构域以及活跃的增强子和启动子在每个细胞的全基因组范围内以一致的方式组织,这表明它们可能驱动染色体和基因组折叠。通过研究由多能性因子和核小体重塑去乙酰化酶(NuRD)调控的基因,我们阐述了单细胞基因组结构的测定如何为研究生物学过程提供一种新方法。