Suppr超能文献

天然大肠杆菌天冬氨酸转氨甲酰酶的动力学机制。

Kinetic mechanism of native Escherichia coli aspartate transcarbamylase.

作者信息

Hsuanyu Y, Wedler F C

机构信息

Department of Molecular and Cell Biology, Pennsylvania State University, University Park 16802.

出版信息

Arch Biochem Biophys. 1987 Dec;259(2):316-30. doi: 10.1016/0003-9861(87)90498-x.

Abstract

Equilibrium isotope exchange kinetics have been used to reinvestigate the kinetic mechanism of Escherichia coli aspartate transcarbamylase (aspartate carbamoyl-transferase) at pH 7.0, 30 degrees C. Keq = 5.9 (+/- 0.6) X 10(3), allowing variation of substrate concentrations above and below their Km values in all experiments, a condition not possible at pH 7.8 [F. C. Wedler and F. J. Gasser (1974) Arch. Biochem. Biophys. 163, 57-68]. The rate of the [14C]Asp in equilibrium N-carbamoyl L-aspartate (C-Asp) exchange reaction was five times faster than that of [32P]carbamyl phosphate (C-P) in equilibrium Pi, which argues strongly against the rapid equilibrium random mechanism previously proposed by E. Heyde, A. Nagabhushanam, and J. F. Morrison [Biochemistry 12, 4718-4726 (1973]. Substrate concentrations were varied either as reactant-product pairs (holding the other pair constant) or together simultaneously in constant ratio at equilibrium. The resulting kinetic saturation patterns were most consistent with a preferred order random kinetic mechanism, with C-P binding prior to Asp and with C-Asp being released before Pi. Weak inhibition effects at high substrate levels could be accounted for by multiple weak dead-end complexes or ionic strength effects. Computer-based simulations have led to a set of rate constants that fit the experimental data, are in agreement with rate constants measured previously by pre-steady-state methods, and predict the correct initial velocities in the forward and reverse directions. Simulations also show that rate constants consistent with any of the various alternative mechanisms do not provide good fit to the experimental data. A model for the kinetic mechanism is considered, in which the binding of Asp prior to C-P may restrict access of C-P to the active site, but C-P binding prior to Asp potentiates the enzyme for the allosteric (T-R) transition, centered entirely upon the Asp binding process.

摘要

平衡同位素交换动力学已被用于在pH 7.0、30℃的条件下重新研究大肠杆菌天冬氨酸转氨甲酰酶(天冬氨酸氨甲酰基转移酶)的动力学机制。Keq = 5.9(±0.6)×10³,使得在所有实验中底物浓度能够在其Km值上下变化,这是在pH 7.8时无法实现的条件[F. C. 韦德勒和F. J. 加塞尔(1974年)《生物化学与生物物理学文献》163, 57 - 68]。在平衡的N - 氨甲酰 - L - 天冬氨酸(C - Asp)交换反应中,[¹⁴C]天冬氨酸(Asp)的速率比平衡的无机磷酸(Pi)中[³²P]氨甲酰磷酸(C - P)的速率快五倍,这有力地反驳了E. 海德、A. 纳加布沙纳姆和J. F. 莫里森先前提出的快速平衡随机机制[《生物化学》12, 4718 - 4726(1973年)]。底物浓度的变化方式有两种,要么作为反应物 - 产物对(保持另一对恒定),要么在平衡时以恒定比例同时变化。由此产生的动力学饱和模式与优先顺序随机动力学机制最为一致,即C - P在Asp之前结合,且C - Asp在Pi之前释放。在高底物水平下的弱抑制作用可以用多个弱的终产物复合物或离子强度效应来解释。基于计算机的模拟得出了一组速率常数,这些常数与实验数据相符,与先前通过预稳态方法测得的速率常数一致,并预测了正向和反向的正确初始速度。模拟还表明,与任何其他替代机制一致的速率常数都不能很好地拟合实验数据。文中考虑了一种动力学机制模型,其中Asp在C - P之前结合可能会限制C - P进入活性位点,但C - P在Asp之前结合会增强酶的变构(T - R)转变,而这种转变完全以Asp的结合过程为中心。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验