Future Industries Institute, University of South Australia, Mawson Lakes Campus, Adelaide, SA, 5095, Australia.
Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800, Minden, Pulau Pinang, Malaysia.
Anal Bioanal Chem. 2021 Apr;413(10):2721-2733. doi: 10.1007/s00216-020-03039-z. Epub 2020 Nov 21.
It is well established that cell surface glycans play a vital role in biological processes and their altered form can lead to carcinogenesis. Mass spectrometry-based techniques have become prominent for analysing N-linked glycans, for example using matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS). Additionally, MALDI MS can be used to spatially map N-linked glycans directly from cancer tissue using a technique termed MALDI MS imaging (MALDI MSI). This powerful technique combines mass spectrometry and histology to visualise the spatial distribution of N-linked glycans on a single tissue section. Here, we performed N-glycan MALDI MSI on six endometrial cancer (EC) formalin-fixed paraffin-embedded (FFPE) tissue sections and tissue microarrays (TMA) consisting of eight EC patients with lymph node metastasis (LNM) and twenty without LNM. By doing so, several putative N-linked glycan compositions were detected that could significantly distinguish normal from cancerous endometrium. Furthermore, a complex core-fucosylated N-linked glycan was detected that could discriminate a primary tumour with and without LNM. Structural identification of these putative N-linked glycans was performed using porous graphitized carbon liquid chromatography tandem mass spectrometry (PGC-LC-MS/MS). Overall, we observed higher abundance of oligomannose glycans in tumour compared to normal regions with AUC ranging from 0.85-0.99, and lower abundance of complex N-linked glycans with AUC ranges from 0.03-0.28. A comparison of N-linked glycans between primary tumours with and without LNM indicated a reduced abundance of a complex core-fucosylated N-glycan (Hex)(HexNAc)(Deoxyhexose)+(Man)(GlcNAc), in primary tumour with associated lymph node metastasis. In summary, N-linked glycan MALDI MSI can be used to differentiate cancerous endometrium from normal, and endometrial cancer with LNM from endometrial cancer without.
已有大量研究证实,细胞表面糖链在生物过程中发挥着至关重要的作用,其异常形式可导致癌变。基于质谱的技术已成为分析 N-连接糖链的重要手段,例如基质辅助激光解吸/电离质谱(MALDI MS)。此外,MALDI MS 还可用于通过一种称为 MALDI MS 成像(MALDI MSI)的技术,直接从癌症组织中空间定位 N-连接糖链。这项强大的技术结合了质谱和组织学,可在单个组织切片上可视化 N-连接糖链的空间分布。在此,我们对 6 例福尔马林固定石蜡包埋(FFPE)的子宫内膜癌(EC)组织切片和包含 8 例淋巴结转移(LNM)和 20 例无 LNM 的 EC 患者的组织微阵列(TMA)进行了 N-糖链 MALDI MSI 分析。通过这种方式,检测到了几种可能的 N-连接糖组成,它们可以显著区分正常和癌变的子宫内膜。此外,还检测到了一种复杂的核心岩藻糖基化 N-连接糖,可区分有和无 LNM 的原发性肿瘤。通过多孔石墨化碳液相色谱串联质谱(PGC-LC-MS/MS)对这些假定的 N-连接糖进行了结构鉴定。总的来说,我们观察到肿瘤中寡甘露糖聚糖的丰度高于正常区域,AUC 范围为 0.85-0.99,而复杂 N-连接聚糖的丰度较低,AUC 范围为 0.03-0.28。对有和无 LNM 的原发性肿瘤之间的 N-连接糖进行比较表明,在伴有淋巴结转移的原发性肿瘤中,一种复杂的核心岩藻糖基化 N-糖(Hex)(HexNAc)(Deoxyhexose)+(Man)(GlcNAc)的丰度降低。总之,N-连接糖 MALDI MSI 可用于区分正常子宫内膜和癌变子宫内膜,以及有和无 LNM 的子宫内膜癌。