Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States.
Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States.
ACS Appl Mater Interfaces. 2020 Dec 9;12(49):55116-55124. doi: 10.1021/acsami.0c12926. Epub 2020 Nov 21.
Inspired by biological ion channels, artificial nanopore-based architectures have been developed for smart ion/molecular transport control with potential applications to iontronics and energy conversion. Advances in nanofabrication technology enable simple, versatile construction methods, and post-fabrication functionalization delivers nanochannels with unique ion transport-control attributes. Here, we characterize a pH-responsive, charge-selective dual-gating block copolymer (BCP) membrane composed of polystyrene--poly(4-vinylpyridine) (PS--P4VP), capable of self-organizing into highly ordered nanocylindrical domains. Because the PS--P4VP membrane exhibits pH-dependent structural transitions, it is suitable for designing intelligent pH-gated biomimetic channels, for example, exhibiting on-off transport switching at pH values near the p of P4VP with excellent anion permselectivity at pH < p. Introducing the BCP membrane onto nanopore electrode arrays (BCP@NEAs) allows the BCP to serve as a pH-responsive gate controlling ion transfer into the NEA nanopores. Such selectively transported and confined ions are detected by using a 100 nm gap dual-ring nanoelectrode structure capable of enhancing current output by efficient redox cycling with an amplification factor >10. In addition, BCP@NEAs exhibit extraordinary pH-gated ion selectivity, resulting in a 3380-fold current difference between anion and cation probes at pH 3.0. This hierarchically organized BCP-gated NEA system can serve as a template for the development of other stimulus-responsive ion gates, for example, those based on temperature and ligand gating, thus exploiting the intrinsic advantages of NEAs, such as enhanced sensitivity based on redox cycling, which may lead to technological applications such as engineered biosensors and iontronic devices.
受生物离子通道的启发,人们开发了基于人工纳米孔的架构,用于智能离子/分子传输控制,其潜在应用包括离子电子学和能量转换。纳米制造技术的进步使得简单、多功能的构建方法成为可能,而后期的制造功能化则为纳米通道提供了独特的离子传输控制属性。在这里,我们描述了一种由聚苯乙烯-聚(4-乙烯基吡啶)(PS-P4VP)组成的 pH 响应型、电荷选择性的双门控嵌段共聚物(BCP)膜,该膜能够自组装成高度有序的纳米圆柱畴。由于 PS-P4VP 膜表现出 pH 依赖性的结构转变,因此它适合设计智能 pH 门控仿生通道,例如,在 pH 值接近 P4VP 的 p 值时表现出开/关传输切换,并且在 pH < p 时具有优异的阴离子选择透过性。将 BCP 膜引入纳米孔电极阵列(BCP@NEA)中,可使 BCP 充当 pH 响应门,控制离子进入 NEA 纳米孔的传输。通过使用具有放大因子 >10 的高效氧化还原循环来增强电流输出的 100nm 间隙双环纳米电极结构,可以检测到这种选择性传输和受限的离子。此外,BCP@NEA 表现出非凡的 pH 门控离子选择性,导致在 pH 3.0 时阴离子和阳离子探针之间的电流差异达到 3380 倍。这种分层组织的 BCP 门控 NEA 系统可以作为其他刺激响应离子门的模板,例如基于温度和配体门控的离子门,从而利用 NEA 的固有优势,例如基于氧化还原循环的增强灵敏度,这可能会导致工程生物传感器和离子电子设备等技术应用。