Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States.
Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States.
ACS Appl Mater Interfaces. 2023 Aug 23;15(33):39707-39715. doi: 10.1021/acsami.3c06709. Epub 2023 Aug 14.
Hydrophobic gating in biological transport proteins is regulated by stimulus-specific switching between filled and empty nanocavities, endowing them with selective mass transport capabilities. Inspired by these, solid-state nanochannels have been integrated into functional materials for a broad range of applications, such as energy conversion, filtration, and nanoelectronics, and here we extend these to electrochemical biosensors coupled to mass transport control elements. Specifically, we report hierarchically organized structures with block copolymers on tyrosinase-modified two-electrode nanopore electrode arrays (BCP@NEAs) as stimulus-controlled electrochemical biosensors for alkylphenols. A polystyrene--poly(4-vinyl)pyridine (PS--P4VP) membrane placed atop the NEA endows the system with potential-responsive gating properties, where water transport is spatially and temporarily gated through hydrophobic P4VP nanochannels by the application of appropriate potentials. The reversibility of hydrophobic voltage-gating makes it possible to capture and confine analyte species in the attoliter-volume vestibule of cylindrical nanopore electrodes, enabling redox cycling and yielding enhanced currents with amplification factors >100× when operated in a generator-collector mode. The enzyme-coupled sensing capabilities are demonstrated using nonelectroactive 4-ethyl phenol, exploiting the tyrosinase-catalyzed turnover into reversibly redox-active quinones, then using the quinone-catechol redox reaction to achieve ultrasensitive cycling currents in confined BCP@NEA sensors giving a limit-of-detection of ∼120 nM. The mass transport controlled sensing platform described here is relevant to the development of enzyme-coupled multiplex biosensors for sensitive and selective detection of biomarkers and metabolites in next-generation point-of-care devices.
生物转运蛋白中的疏水门控由填充和空纳米腔之间特定刺激的切换来调节,这使它们具有选择性的质量传输能力。受此启发,我们将固态纳米通道集成到各种功能材料中,用于广泛的应用,例如能量转换、过滤和纳米电子学,在这里我们将其扩展到与质量传输控制元件相结合的电化学生物传感器。具体来说,我们报告了在酪氨酸酶修饰的两电极纳米孔电极阵列 (BCP@NEA) 上具有嵌段共聚物的分级组织结构,作为烷基酚的刺激控制电化学生物传感器。PS-P4VP 膜置于 NEA 上方,赋予系统具有响应电势的门控特性,其中通过施加适当的电势,通过疏水 P4VP 纳米通道在空间和时间上对水传输进行门控。疏水电压门控的可逆性使得有可能在圆柱形纳米孔电极的微微升体积前庭中捕获和限制分析物物种,从而实现氧化还原循环,并在以发生器-收集器模式操作时产生增强的电流,放大倍数>100×。使用非电活性的 4-乙基苯酚来证明酶偶联的传感能力,利用酪氨酸酶催化的转化为可逆的氧化还原活性醌,然后利用醌-儿茶酚氧化还原反应在受限的 BCP@NEA 传感器中实现超灵敏的循环电流,检测限约为 120 nM。这里描述的质量传输控制传感平台与用于下一代即时护理设备中生物标志物和代谢物的敏感和选择性检测的酶偶联多重生物传感器的发展相关。