Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia.
Ergonomics. 2021 May;64(5):625-639. doi: 10.1080/00140139.2020.1853820. Epub 2020 Dec 23.
As frequency and severity of heat waves are increasing, personal cooling systems are being considered as a tool to mitigate heat strain in workers in various occupational settings. This study assessed cooling capacities (C; W·h·m) of various commercially available vests using different cooling concepts. Measurements were conducted over 8 h in a climatic chamber (Ta: 35 °C, RH: 35 %) using a thermal manikin (Ts: 35 °C). Cooling power (P) and duration of efficient cooling (t) determined the C value of each vest. Among the cooling concepts the active cooling vests were the most efficient, extracting 331 W·h·m, followed by the vests with phase change material (PCM) inserts, hybrid and evaporative vests, extracting a maximum of 164 W·h·m, 146 W·h·m and 113 W·h·m, respectively. While some vests with PCM inserts provided intense but shorter cooling, evaporative vests provided mild but longer cooling throughout. The study assessed the cooling capacity of commercially available vests, using a thermal manikin. The vests present an affordable solution in various occupational settings where air-conditioning is not an option. A range of cooling capacities among different cooling concepts and vests of the same category were noted. ACVs: air-cooled vests; LCVs: liquid-cooled vests; ECVs: evaporative cooling vests; HCVs: hybrid cooling vests; PCVs: phase-change cooling vests; PCM: phase change material; C: cooling capacity; Rt: thermal resistance; Re: evaporative resistance; Re (%): relative evaporative resistance; P: cooling power; P: maximal cooling power; P: average cooling power; t: cooling duration; AUC: area under the curve; Ta: ambient temperature; RH: relative humidity; v: chamber air flow; Ts: manikin surface temperature.
随着热浪的频率和强度不断增加,个人冷却系统正被视为减轻各种职业环境中工人热应激的一种工具。本研究评估了使用不同冷却概念的各种市售背心的冷却能力 (C; W·h·m)。在气候室 (Ta: 35°C,RH: 35 %) 中使用热模拟人进行了 8 小时的测量 (Ts: 35°C)。每个背心的 C 值由冷却功率 (P) 和有效冷却持续时间 (t) 决定。在冷却概念中,主动冷却背心的效率最高,可提取 331 W·h·m,其次是相变材料 (PCM) 插片背心、混合冷却背心和蒸发冷却背心,分别可提取最大 164 W·h·m、146 W·h·m 和 113 W·h·m。虽然一些带有 PCM 插片的背心提供了强烈但短暂的冷却,但蒸发冷却背心则提供了温和但持续时间更长的冷却。本研究使用热模拟人评估了市售背心的冷却能力。在没有空调的各种职业环境中,这些背心是一种经济实惠的解决方案。不同冷却概念和同一类别的背心之间存在不同的冷却能力范围。ACVs: 空气冷却背心;LCVs: 液体冷却背心;ECVs: 蒸发冷却背心;HCVs: 混合冷却背心;PCVs: 相变冷却背心;PCM: 相变材料;C: 冷却能力;Rt: 热阻;Re: 蒸发阻;Re (%): 相对蒸发阻;P: 冷却功率;P: 最大冷却功率;P: 平均冷却功率;t: 冷却持续时间;AUC: 曲线下面积;Ta: 环境温度;RH: 相对湿度;v: 室空气流量;Ts: 模拟人表面温度。