Suppr超能文献

通孔中铜电沉积的模拟

Simulation of Copper Electrodeposition in Through-Hole Vias.

作者信息

Braun T M, Josell D, John J, Moffat T P

机构信息

Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA.

DuPont Electronics & Imaging, Marlborough, Massachusetts, USA.

出版信息

J Electrochem Soc. 2020;167. doi: https://doi.org/10.1149/2.0102001JES.

Abstract

Copper electrodeposition processes for filling metallized through-hole (TH) and through-silicon vias (TSV) depend on spatially selective breakdown of a co-adsorbed polyether-chloride adlayer within the recessed surface features. In this work, a co-adsorption-dependent suppression model that has previously captured experimental observations of localized Cu deposition in TSV is used to explore filling of TH features. Simulations of potentiodynamic and galvanostatic TH filling are presented. An appropriate applied potential or current localizes deposition to the middle of the TH. Subsequent deposition proceeds most rapidly in the radial direction leading to sidewall impingement at the via center creating two blind vias. The growth front then evolves primarily toward the two via openings to completely fill the TH in a manner analogous to TSV filling. Applied potentials, or currents, that are overly reducing result in metal ion depletion within the via and void formation. Simulations in larger TH features (i.e., diameter = 85 μm instead of 10 μm) indicate that lateral diffusional gradients within the via can lead to fluctuations between active and passive deposition along the metal/electrolyte interface.

摘要

用于填充金属化通孔(TH)和硅通孔(TSV)的铜电沉积工艺取决于凹陷表面特征内共吸附的聚醚 - 氯化物吸附层的空间选择性击穿。在这项工作中,一个先前已捕捉到TSV中局部铜沉积实验观察结果的共吸附依赖抑制模型被用于探索TH特征的填充。文中给出了动电位和恒电流TH填充的模拟结果。适当施加的电位或电流会使沉积定位于TH的中部。随后的沉积在径向方向上进行得最快,导致在通孔中心处侧壁碰撞,从而形成两个盲孔。然后生长前沿主要朝着两个通孔开口方向发展,以类似于TSV填充的方式完全填充TH。过度还原的施加电位或电流会导致通孔内金属离子耗尽并形成空洞。在更大的TH特征(即直径为85μm而非10μm)中的模拟表明,通孔内的横向扩散梯度会导致沿金属/电解质界面的活性和被动沉积之间的波动。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5aa/7675924/1c0e7523fa5a/nihms-1588367-f0001.jpg

相似文献

1
Simulation of Copper Electrodeposition in Through-Hole Vias.
J Electrochem Soc. 2020;167. doi: https://doi.org/10.1149/2.0102001JES.
2
Effect of Chloride Concentration on Copper Deposition in Through Silicon Vias.
J Electrochem Soc. 2019;166(1). doi: https://doi.org/10.1149/2.0341901jes.
3
Superconformal Film Growth: From Smoothing Surfaces to Interconnect Technology.
Acc Chem Res. 2023 May 2;56(9):1004-1017. doi: 10.1021/acs.accounts.2c00840. Epub 2023 Apr 19.
4
Superconformal Copper Deposition in Through Silicon Vias by Suppression-Breakdown.
J Electrochem Soc. 2018;165(2). doi: https://doi.org/10.1149/2.0061802jes.
5
Bottom-Up Copper Filling of Millimeter Size Through Silicon Vias.
J Electrochem Soc. 2019;166(1). doi: https://doi.org/10.1149/2.0321901jes.
6
Extreme Bottom-up Gold Filling of High Aspect Ratio Features.
Acc Chem Res. 2023 Mar 21;56(6):677-688. doi: 10.1021/acs.accounts.2c00826. Epub 2023 Feb 27.
7
Bottom-Up Copper Filling of Large Scale Through Silicon Vias for MEMS Technology.
J Electrochem Soc. 2018;166(1). doi: https://doi.org/10.1149/2.0091901jes.
8
Bottom-up Cu filling of annular through silicon vias: Microstructure and texture.
Electrochim Acta. 2020 Mar;335. doi: 10.1016/j.electacta.2020.135612.
9
Superconformal Nickel Deposition in Through Silicon Vias: Experiment and Prediction.
J Electrochem Soc. 2018;165(7). doi: https://doi.org/10.1149/2.0911807jes.
10
Experiment and simulation of single inhibitor SH110 for void-free TSV copper filling.
Sci Rep. 2021 Jun 8;11(1):12108. doi: 10.1038/s41598-021-91318-9.

引用本文的文献

2
Bottom-up Cu filling of annular through silicon vias: Microstructure and texture.
Electrochim Acta. 2020 Mar;335. doi: 10.1016/j.electacta.2020.135612.
3
Effect of Chloride on Microstructure in Cu Filled Microscale Through Silicon Vias.
J Electrochem Soc. 2021;168(11). doi: 10.1149/1945-7111/ac2bea.
4
Microstructure and Texture in Copper Filled Millimeter Scale Through Silicon Vias.
J Electrochem Soc. 2022;169(3). doi: 10.1149/1945-7111/ac5ad8.
5

本文引用的文献

1
SEIRAS Study of Chloride-Mediated Polyether Adsorption on Cu.
J Phys Chem C Nanomater Interfaces. 2018;122(38). doi: https://doi.org/10.1021/acs.jpcc.8b06644.
2
Bottom-Up Copper Filling of Millimeter Size Through Silicon Vias.
J Electrochem Soc. 2019;166(1). doi: https://doi.org/10.1149/2.0321901jes.
3
Bottom-Up Copper Filling of Large Scale Through Silicon Vias for MEMS Technology.
J Electrochem Soc. 2018;166(1). doi: https://doi.org/10.1149/2.0091901jes.
4
Superconformal Copper Deposition in Through Silicon Vias by Suppression-Breakdown.
J Electrochem Soc. 2018;165(2). doi: https://doi.org/10.1149/2.0061802jes.
5
Effect of Chloride Concentration on Copper Deposition in Through Silicon Vias.
J Electrochem Soc. 2019;166(1). doi: https://doi.org/10.1149/2.0341901jes.
6
Superconformal Nickel Deposition in Through Silicon Vias: Experiment and Prediction.
J Electrochem Soc. 2018;165(7). doi: https://doi.org/10.1149/2.0911807jes.
7
Superconformal Bottom-Up Gold Deposition in High Aspect Ratio Through Silicon Vias.
J Electrochem Soc. 2017;164(6):D327-D334. doi: 10.1149/2.1311706jes. Epub 2017 Apr 14.
8
1/f  noise in bistable electrocatalytic reactions on mesoscale electrodes.
Faraday Discuss. 2016 Nov 1;193:187-205. doi: 10.1039/c6fd00115g. Epub 2016 Sep 16.
9
Self-associative behavior and drug-solubilizing ability of poloxamine (tetronic) block copolymers.
Langmuir. 2008 Oct 7;24(19):10688-97. doi: 10.1021/la8016563. Epub 2008 Sep 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验