Braun T M, Josell D, John J, Moffat T P
Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA.
DuPont Electronics & Imaging, Marlborough, Massachusetts, USA.
J Electrochem Soc. 2020;167. doi: https://doi.org/10.1149/2.0102001JES.
Copper electrodeposition processes for filling metallized through-hole (TH) and through-silicon vias (TSV) depend on spatially selective breakdown of a co-adsorbed polyether-chloride adlayer within the recessed surface features. In this work, a co-adsorption-dependent suppression model that has previously captured experimental observations of localized Cu deposition in TSV is used to explore filling of TH features. Simulations of potentiodynamic and galvanostatic TH filling are presented. An appropriate applied potential or current localizes deposition to the middle of the TH. Subsequent deposition proceeds most rapidly in the radial direction leading to sidewall impingement at the via center creating two blind vias. The growth front then evolves primarily toward the two via openings to completely fill the TH in a manner analogous to TSV filling. Applied potentials, or currents, that are overly reducing result in metal ion depletion within the via and void formation. Simulations in larger TH features (i.e., diameter = 85 μm instead of 10 μm) indicate that lateral diffusional gradients within the via can lead to fluctuations between active and passive deposition along the metal/electrolyte interface.
用于填充金属化通孔(TH)和硅通孔(TSV)的铜电沉积工艺取决于凹陷表面特征内共吸附的聚醚 - 氯化物吸附层的空间选择性击穿。在这项工作中,一个先前已捕捉到TSV中局部铜沉积实验观察结果的共吸附依赖抑制模型被用于探索TH特征的填充。文中给出了动电位和恒电流TH填充的模拟结果。适当施加的电位或电流会使沉积定位于TH的中部。随后的沉积在径向方向上进行得最快,导致在通孔中心处侧壁碰撞,从而形成两个盲孔。然后生长前沿主要朝着两个通孔开口方向发展,以类似于TSV填充的方式完全填充TH。过度还原的施加电位或电流会导致通孔内金属离子耗尽并形成空洞。在更大的TH特征(即直径为85μm而非10μm)中的模拟表明,通孔内的横向扩散梯度会导致沿金属/电解质界面的活性和被动沉积之间的波动。