Carlen Eric A, Maas Jan
Department of Mathematics, Hill Center, Rutgers University, 110 Frelinghuysen Road, Piscataway, NJ 08854-8019 USA.
Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria.
J Stat Phys. 2020;178(2):319-378. doi: 10.1007/s10955-019-02434-w. Epub 2019 Nov 27.
We study dynamical optimal transport metrics between density matrices associated to symmetric Dirichlet forms on finite-dimensional -algebras. Our setting covers arbitrary skew-derivations and it provides a unified framework that simultaneously generalizes recently constructed transport metrics for Markov chains, Lindblad equations, and the Fermi Ornstein-Uhlenbeck semigroup. We develop a non-nommutative differential calculus that allows us to obtain non-commutative Ricci curvature bounds, logarithmic Sobolev inequalities, transport-entropy inequalities, and spectral gap estimates.
我们研究与有限维(C^*) -代数上的对称狄氏型相关的密度矩阵之间的动态最优传输度量。我们的设定涵盖任意斜导数,并且提供了一个统一的框架,它同时推广了最近为马尔可夫链、林德布拉德方程和费米奥恩斯坦 - 乌伦贝克半群构造的传输度量。我们发展了一种非交换微积分,使我们能够获得非交换里奇曲率界、对数索伯列夫不等式、传输熵不等式和谱隙估计。