Wirth Melchior, Zhang Haonan
Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria.
Ann Henri Poincare. 2023;24(3):717-750. doi: 10.1007/s00023-022-01220-x. Epub 2022 Aug 8.
Following up on the recent work on lower Ricci curvature bounds for quantum systems, we introduce two noncommutative versions of curvature-dimension bounds for symmetric quantum Markov semigroups over matrix algebras. Under suitable such curvature-dimension conditions, we prove a family of dimension-dependent functional inequalities, a version of the Bonnet-Myers theorem and concavity of entropy power in the noncommutative setting. We also provide examples satisfying certain curvature-dimension conditions, including Schur multipliers over matrix algebras, Herz-Schur multipliers over group algebras and generalized depolarizing semigroups.
基于近期关于量子系统较低里奇曲率界的工作,我们引入了矩阵代数上对称量子马尔可夫半群的曲率 - 维数界的两种非交换版本。在合适的此类曲率 - 维数条件下,我们证明了一族依赖于维数的泛函不等式、非交换情形下的博内 - 迈尔斯定理版本以及熵幂的凹性。我们还提供了满足某些曲率 - 维数条件的例子,包括矩阵代数上的舒尔乘子、群代数上的赫茨 - 舒尔乘子以及广义去极化半群。